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Preface

This script is a summary of the lecture Algorithmen und Datenstrukturen held
by the department of Computer Science at ETH Zurich. This is not official
material and it does not cover all the exam relevant topic (e.g. dynamic
programming is not covered). If you find any errors please notify me at
soel.micheletti@hotmail.it. I wish you all the best for the semester :)
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Chapter 1

Introduction and Preliminary Notions

In the famous textbook Introduction to algorithms we find the following (in-
formal) definition of algorithm:

An algorithm is a well-defined computational procedure that takes some
value as input and produces some value as output. An algorithm is
thus a sequence of computational steps that transform the input into
the output. 1

We represent the definition graphically for your convenience

The algorithm box can do a lot of different things: doing a mathematical
computation, suggesting to the user of a social media the people he might
know, computing the best combinations of public transport to go from ETH
Zurich to Selnau...

In this course we will ”open” the algorithm box and appreciate the beauty
of what it contains. We will do this in two different ways: on the one hand
we will study ”famous” algorithms, on the other hand you will learn how to
design your own algorithms to solve new problems. The second goal is defi-
nitely more challenging (but also more interesting) and can be performed in

1Cormen et al., Introduction to algorithms, MIT Press, 2009. This book is an excellent
source, if you have problems in understanding a topic from the lecture, consider reading the
corresponding pages in this book!
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several ways: new algorithms can be developed by modifying ”famous” al-
gorithms, by exploiting some successful paradigm or.. with some phantasy!

In both cases, when studying algorithms, two fundamentals properties need
to be considered:

• Correctness: given a problem specification, an algorithm has to return
the correct answer. Imagine an algorithmA that it is supposed to sort a
list of numbers. If A returns 3, 1, 2 for the input 2, 1, 3, then it does not
solve the initial task and hence it is not correct. An incorrect algorithm
is of course usually not very useful. Correctness can be proved via
different techniques (induction, invariants, ...)

• Efficiency: informally, this means that an algorithm should not take
too much time to solve the task. Here we assume that efficiency can
be measured by the number of computational steps required by an al-
gorithm. Later in this chapter, we will discuss the asymptotic notation,
a convenient tool that allows one to asymptotically represent the num-
ber of operations performed by an algorithm with respect to the size
of the input. Efficiency is important for two reasons. The first reason
is the phenomenon of combinatoric explosion (i.e. in some cases correct
algorithms require more operations than the number of atoms in the
universe even for relative small input sizes, which makes those algo-
rithms useless even though they are correct). The second reason is the
fact that if an algorithm is asymptotically more efficient than another
one, then it might perform significantly better.

So far so good: we have discussed an informal definition of algorithm and
we have seen that good algorithms need to be both correct AND efficient.
But what kind of algorithms are taught in this course? There will be three
main categories of algorithms (see below), but the ultimate goal of this
course is to teach you principles that are widely applicable.

• Sorting algorithms. Those algorithm get a list of object as input and
return the sorted list (according to some order relationship) as out-
put. Those kind of algorithms are a canonical example of introductory
classes because they are very well suited to show students how algo-
rithms are analysed (both in the sense of correctness and efficiency).

• Graph algorithms. Those algorithms get a graph as input and returns
the answer to a question of interest as output. Example of problem you
will be able to solve are: is it possible to reach node v from node u?
What is the shortest path from u to v?

• Dynamic programming algorithms. Those algorithms use a table to
efficiently solve various tasks. You will look at several examples and
you will implement dynamic programming solutions very often (in
this course and in the following semesters).

2



1.1. Induction

At this point, since this course is called Algorithmen und Datenstrukturen, you
might wonder what data structures are. Often, also in the lecture, the two
concepts are not clearly separated from each other. This happens because
they are strictly connected. In the previous bullet list you can find the words
list, graph and table. Those terms are quite abstract and are implemented in
a programming language with a data structure. If you have a little bit of
experience in programming you might know arrays (this is an example of
data structure that can be used to implement a list). In general there are
several different data structures to represent lists, graphs and tables. For
examples you can represent graphs with adjacency matrices or adjacency
lists, and there are trade-offs since for some operations adjacency matrices
are more efficient, while for others adjacency lists suits better.

1.1 Induction

As we have already seen, correctness is a fundamental property of a useful
algorithm. In order to prove the correctness of an algorithm there are dif-
ferent techniques. Here we introduce the proofs by induction, an important
tool which is absolutely not restricted to this context, since it can be applied
in several different scenarios.

Suppose you want to prove a formula P(n) for all n ∈ N. The proof by
cases is not possible here (you would have to prove P(0), P(1), P(2), ... for
all the infinite cases). What is possible is to use the domino principle which
is formally formulated by the induction proof rule. Intuitively you show that
the statement you wish to prove holds for the first domino and then, under
the assumption that the statement holds for an arbitrary domino, you show
that the statement also holds for the next one.

The schema to prove ∀n ∈N. P(n) is the following:

3



1.2. Asymptotic Notation

• Base case: show that P(0) holds.

• Induction hypothesis: we assume P(n) for an arbitrary n.

• Induction step: prove P(n + 1) under the assumption P(n) for an
arbitrary n.

Note that there exists also more involved forms of induction. For example
the so called Noetherian induction proves P(n) for all n ∈ N by proving
P(n) for an arbitrary n under the assumption that P(m) holds for all m < n.
Also here you have to prove a base case. We introduce Noetherian induction
here because sometimes it is used in ETH lectures although it was never
introduced before: you are not expected to be able to apply it by yourself
(yet), but if you see an unusual form of induction do not be shocked!

We conclude this brief section with an example.

Example 1.1 Consider the following recursive equation:

T(n) =

{
4 + 2T( n

8 ) if n > 1
1 if n = 1

You may assume that n is a power of 8. Show that a closed form for the formula is
given by T(n) = 5n

1
3 − 4 by induction over n.

• Base case: T(1) = 5 · 1 1
3 − 4 = 1 according to the closed formula and 1 is

also the result of the recursive formula.

• Induction hypothesis: the statement holds for an n.

• Induction step: T(n) = 4 + 2T( n
8 ) = 4 + 2(5 n

8
1
3 − 4) = 5n

1
3 − 4 where

we used the induction hypothesis in the step from 4 + 2T( n
8 ) to 4 + 2(5 n

8
1
3 −

4).

1.2 Asymptotic Notation

In the lecture you have discussed Karatsuba’s algorithm for the multiplica-
tion of two numbers. We don’t want to repeat the technical details about
the algorithm here, but we stress the reason why such an algorithm was
introduced. Although it looks more involved than the method you learned
in school, Karatsuba’s algorithm is more efficient because it performs less
elementary operations. In this course, when we talk about efficiency, we
always mean it in a theoretical way. In other words, we assume that an al-
gorithm that performs less elementary operations than another one is more
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1.2. Asymptotic Notation

efficient. Note that this might not always be true in practice, where other
factors may play a role (e.g. memory performance).

As you may recall from the Karatsuba’s algorithm example, it is not easy
to exactly count the number of elementary operations. For this reason we
introduce the asymptotic notation, a useful tool that puts all functions that
behave roughly in the same way into the same equivalence class. Concretely,
it puts functions which differ only in multiplicative/ additive constants into
the same equivalence class. This is particularly useful to make the analysis
of algorithms less tedious.

In this course we choose a set of elementary operations which can be exe-
cuted fast (aka operations that can be executed in constant time or in O(1))
and we count how many of such operations an algorithm does. However,
instead of counting the exact number of operations, we consider an asymp-
totic estimation of the number of elementary operations where we omit the
main multiplicative and additive constants (i.e. we can not omit those con-
stants if they are in the exponent of a power!) For example, instead of saying
this algorithm does 3n + 190 elementary operations we will say this algorithm has
linear time, noted O(n). Note that this model is an abstraction because an
algorithm that does 1234567n + 19091 operations is considered exactly as ef-
ficient as an algorithm that does n operations (they are both O(n), although
they perform a different numbers of operations).

Examples of elementary operations are arithmetic and compare operations
(addition, multiplication, power, ≤, >...), lookup in memory (for example
accessing a given element in an array), declaration and value assignment of
a variable.

Here we present you the formal definitions of the asymptotic notations.

Upper bound

O(n) := { f : N→ R+|∃c ∈ R+, n0 ∈N, ∀n ≥ n0 : f (n) ≤ c · g(n)}
O( f ) ≤ O(g)⇔ ∃c, n0, ∀n ≥ n0 : f (n) ≤ c · g(n)

Lower bound

Ω(n) := { f : N→ R+|∃c ∈ R+, n0 ∈N, ∀n ≥ n0 : f (n) ≥ c · g(n)}
Ω( f ) ≥ Ω(g)⇔ ∃c, n0, ∀n ≥ n0 : f (n) ≥ c · g(n)

The upper bound is mostly used for the worst time of an algorithm. In facts
several algorithms have a best case runtime which can be asymptotically bet-
ter than the worst case runtime. Consider the following example: given a list
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1.3. Recursion

of n numbers, return true if the list contains the element 5, false otherwise.
A simple algorithm to solve this task is looking at every element of the list
and stopping whenever we find a 5. In this case the best runtime is constant
(if you are lucky the first element of the list is a 5), the worst case runtime is
linear (if the list does not contain a 5 you have to look at all the n elements
of the list). In this case we say that the algorithm has runtime O(n) because
in worst case we have to look at the whole list.

The lower bound in mostly used to say that it is impossible to beat that run-
time. There are examples of problems where the best known algorithm has
runtime O(n · 2n) but it is theoretically possible that there exist a linear al-
gorithm that nobody has found. In this case we can write that the algorithm
has a lower bound Ω(n).

There exist also a definition for the tight bound, which is used when an
algorithm has exactly that asymptotic runtime (in the best and in the worst
case).

Θ( f ) = Θ(g)⇔ O( f ) ≤ O(g) and Ω( f ) ≥ Ω(g)

1.3 Recursion

Imagine that you have to solve an algorithmic problem. In order to solve the
problem you create a function Algo(n) which solves the task for an input
n. Solving the problem recursively means that, in your function Algo(n),
you use the function Algo again, but with an input different than n. The
idea is that the function Algo(n) will call the function Algo a finite number
of times, until it reaches a base case which is solved non-recursively. A
very important property that you have to consider when using recursion is
termination. If your recursive solution does not reach a base case then you
will call your function an infinite number of times (ideally, in practice your
program would run out of memory) without reaching the solution.

Here a couple of hints on how to solve a problem with recursion:

• Consider the base case (or base cases). Those should not be too com-
plicated but they are the heart of your solution: without them you can
not solve the problem.

• Think in general: if you have a big input, how can you solve the prob-
lem if you already have the solution for a smaller input? Usually you
do like this: you have to solve the problem for input n. Assuming you
have the solution for the input n− 1, how can you solve the problem?

• Think about termination. Does your solution always reach a base case?

6



1.3. Recursion

The best way to understand recursion is solving exercises. I suggest you this
ones:

1. Compute the sum 1+2+3+...+n recursively.

2. Implement the multiplication of two numbers a and b recursively.

3. Reverse a string recursively (e.g. ”Hello” becomes ”olleH”).

4. Return the length of a string recursively.

5. Return whether a string is palindrome or not.

6. Given two string, return all possible interleavings (from a previous
exam of Einführung in die Programmierung).

7. Print all possible anagrams of a given string.

Here we think it’s worth to answer some frequently asked questions

What is the relation between recursion and induction?

They are strongly correlated (the domino principle applies also to recursion).
Induction proves that the claim holds for a domino and then proves that if
the claim holds for an arbitrary domino then it must also hold for the next
domino. Recursion assumes that you have a solution for a smaller input and
then it correctly solves the problem for the required input. The difference
between recursion and induction are quite complicated, so we distinguish
them functionally: induction is used for proofs, recursion for definitions and
algorithm declarations.

I heard that recursion is ”bad” and iteration is ”good”. What does it mean?

Recursion and iteration (for example for loops) can be used to solve the same
problem. Recursion is a top-down approach (you start from the input of size
n and then you go backwards to n− 1, n− 2 and so on until you reach the
base case). Iteration is a button-up approach (you start from the base case
and then you take more elements from the input until you reach the answer).
In general the rule is: use iteration instead of recursion (this is the idea of
dynamic programming). The reasons of this rule are multiple and you will
get a complete insight of the problem later in the semester (but in general
an important reason is that the number of recursive calls is limited, while
iteration works also for bigger inputs). However recursion and iteration are
strictly related and being able to think recursively is fundamental.

How is recursion related to the stack overflow problem?
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1.3. Recursion

Recursive calls are saved in a stack (this is not the data structure of this
course, is a region in memory you will learn in the course Systems Program-
ming and Computer Architecture). If you do too many recursive calls then the
stack where recursive calls are saved will run out of memory and the com-
puter will complain. This usually happens if you don’t have a correct base
case or if your input is too big.

Example 1.2 (Star Finding Algorithm) There are n people in a room. We want
to know whether there is a star or not (and when there is a star, which person is
the star). A star is a person that is known by everybody, but he/ she does not know
anybody. For example, if Lionel Messi enters the room we all know who he is, but
he does not know us. For this problem we consider Yes/ No questions as elementary
operations. Other kind of questions are not permitted. We observe that there must
not always exist a star; for example, if everyone knows everybody else, then there is
no star. Moreover, we show with a simple indirect argument that it is impossible
to have two stars. Assume there are two stars S1 and S2. By definition of star, S1
knows S2 (otherwise S2 would not be a star according to our definition). But in
this case it does not hold that S1 does not know anybody. This is a contradiction
to the fact that S1 is a star. Hence in general we have either no stars or exactly
one star. Now we come to the big question, how do we solve the problem? A naive
algorithm consists in collecting complete information, i.e. asking to each person xi,
whether it knows xj for all choices of j 6= i. We can summarize the results in a
table and we look if there is any person which is known by everybody else and does
not know anyone. This algorithm requires n · (n − 1) elementary operations and
hence has asymptotic complexity Θ(n2). Can we do better? The answer is yes, and
we can use recursion to design a faster algorithm. The first step in order to design
a recursive algorithm is considering the base case, i.e. when there are exactly two
people A and B in the room. We proceed by asking to A whether he knows B and
we ask B whether he knows A. If Aknows B but B does not know A, then B is the
star. If B knows A but A does not know B, then A is the star. The base requires
exactly 2 elementary operations. So far so good, but how can we recursively solve
the problem with n people? In order to answer this question, we do the following
fundamental observation. If we take two out of n people in the room, we can ask to
the first person Do you know anybody in the room? If the answer is yes, then
this people is definitely not a star. Otherwise, the other person is not a star, since
the first person does not know him. This insight is particularly useful to design the
following algorithm. Given n people in a room, we can pick a person which is not a
star with a single elementary operation. We isolate this person. Then we can solve
the problem recursively for the remaining n− 1 persons and we can find a candidate
star (a star between this n− 1 persons). At the end we can ask two questions to the
person that we have isolated at the beginning in order to know whether the candidate
star between the n− 1 persons is effectively a star or not. This algorithm is correct,
but is it also efficient? In order to determine the number of elementary operations
that this algorithm requires we write the following recursive formula:
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1.4. Maximum Sub-Array Sum

T(n) =

{
2 if n = 2
1 + T(n− 1) + 2 otherwise

Which we can expand as follows

T(n) = 3 + T(n− 1) = 3 + 3 + T(n− 2) + · · ·+ 3 + T(2) = 3(n− 2) + 2 =
3n− 4.

This suggest (but does not prove) that the runtime of this algorithm is in O(n).
Intuitively we can not do better than this (asymptotically), since we must consider
each person in the room in order to answer the question. Still, we have to prove our
claim about the solution of the recursion. The following induction gives a formal
argument for that.

• Base case: We have 3 · 2− 4 = 2 operations according to the close formula
and also according to the recursive formula.

• IH: the proposition hold for an (arbitrary) n.

• Induction step:

T(n + 1) = 3 + T(n) = 3 + (3n− 4) = 3n− 1 = 3(n + 1)− 4

where we used the induction hypothesis.

1.4 Maximum Sub-Array Sum

Before moving to sorting algorithms, we examine another introductory prob-
lem with multiple algorithmic solutions.

Consider a list a = a1 . . . an of n numbers (positive and negative). The task
is finding the indices i and j that maximize the following expression:

j

∑
k=i

ak

In other words, we want to find the indices that maximize the sum of the ele-
ments between them. A naive algorithm tries all possible indices i and j and
sums the elements of the list between those indices. What is the asymptotic
runtime of such algorithm? There are n − 1 choices for index 1, n − 1 for
index 2 and so on. This means that we have ∑n−1

i=1 n− i = ∑n−1
i=1 i = n(n−1)

2 ∈
Θ(n2) couples of indices to try, where we used Gauss formula. Of course,
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1.4. Maximum Sub-Array Sum

for each choice of the indices, we have to do the sum of the elements in the
range. This operation takes, in the worst case, n operations. This gives an
upper bound of O(n3) operations for the algorithm. An important insight
about this algorithm is that we repeat some computation several times. For
example, we perform the sum of the elements between 1 and n− 1 and the
sum of the elements between 1 and n. Both sums takes O(n). Actually. it
would be possible to remember the result of the sum between 1 and n− 1
and then sum an. In this case, the second sum could be done in constant
time instead of linear time. This observation suggest that we can do some
pre-computation to improve the efficiency of our algorithm. Concretely, we
compute an array b such that bi is the sum of the elements between a1 and
ai. For example for a = 1, 4,−3, 12, 7,−3, 6 we have b = 1, 5, 2, 14, 21, 18, 24.
This new array b allow us to compute ∑

j
k=i ak = bj − bi−1 in constant time in

the worst-case scenario. A new algorithm can hence be designed by trying
all possible indices i and j (in O(n2), as before) and doing the sum of the
elements in a between those indices (in constant time). The total asymptotic
complexity is now O(n2). We have improved the runtime of the naive al-
gorithm, but we still can do better. A famous algorithm paradigm is called
divide-and-conquer and it divides the problem in two (or more) sub prob-
lems, solves them recursively and then puts the solution together. We can
apply this paradigm by splitting a in two parts of (roughly) the same length.
Then we compute the maximum sum in both sub arrays. We have three
possibilities:

• The maximum sum is on the left part of the array.

• The maximum sum is on the right part of the array.

• The maximum sum is between both parts of the array.

In order to address the third case we use maximum prefix/ suffix sum:

• We do an array with the prefix sum. Let p be the maximum element
in this array.

• We do an array with the suffix sum. Let q be the maximum element in
this array.

• The maximum sum between the two sub arrays we have solved recursively
is p + q.

Hence the divide-and-conquer algorithm works as follows: we solve the sub
arrays recursively (let m1 be the maximum sum on the left array and let m2
be the maximum sum on the right array). Find the maximum sum p + q
between the two arrays. Return the maximum between m1, m2 and p + q.
The runtime is given by the following recursion:

10



1.4. Maximum Sub-Array Sum

T(n) =

{
1 if n = 1
2T( n

2 ) + an otherwise

By telescoping the formula we find O(n log n) as total complexity (try to do
it as exercise, but I suggest you to remember this recursive formula and its
result because it is very common).

We have improved the runtime from the initial O(n3) to O(n log n). How-
ever, we can still do better.

We use two variables: max (which saves the maximum subarray sum) and
randmax (which saves the maximum subarray sum starting from the last
point where a maximum subarray sum could start). In facts if the sum of
the elements between indices 1 and j is negative and j < 0, is impossible
that a maximum subarray sum starts from j. We iterate through the array
and we update the maximum when randmax > max and we reset the value
of randmax when it is less than zero.

Algorithm 1: MaxSubArraySum(a)

max← 0 ;
randmax← 0 ;
for t=1, . . . , n− 1 do

randmax← randmax + ai ;
if randmax > max then

max← randmax ;
end
if randmax < 0 then

randmax← 0;
end

end

This algorithm is asymptotically optimal since, In order to solve the problem,
we need at least to look at each element of the array. We say that n is a lower
bound of the algorithm (i.e. we can not do better) and we write it Ω(n).
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Chapter 2

Searching and Sorting

In this chapter we will study two algorithmic problems that are strongly
related: searching and sorting. These are classical problems of introductory
classes, and there are several reasons to study them. First of all, searching
and sorting are very important tasks: Google, for example, became very
popular thanks to a particularly powerful searching algorithm. Moreover,
they are an excellent example of algorithm design and they provide a neat
framework to show some techniques of algorithm analysis. Last but not
least, they give insights about a fundamental trade-off: it is clear that search-
ing in a ”ordered” (or sorted) environment is easier, but it is also clear that
”ordering” (or sorting) a ”messy” (or unsorted) environment has a cost. In
this chapter we will see in which situations it is (not) worth it to pay the
price of sorting in order to be more efficient in the process of searching.

2.1 Searching

We start from the first problem: searching. In this lecture, we will only
consider the problem of searching a particular object in an array of that
type of object. For example, we want to find a given integer in an array of
integers. More formally, we have the following.

Input: an array a[1], a[2], . . . a[n] and an element b

Output: k s.t. a[k] = b or not in the array if the element is not in the array.

We observe that the input array can be either sorted or not. It is intuitively
clear that searching in a sorted array is easier. Compare, for example, the
tasks of searching the word algorithm in an English dictionary or in a busi-
ness book: the former task seems much easier than the latter one. In the
case of searching a word in a business book, we can not do much better
than reading through the book until we either find the word or we finish the
book (if the word is not contained). In the case of the dictionary, however,
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we can exploit the fact that the words are alphabetically sorted and, for ex-
ample, open the dictionary in the middle and determine whether the word
is in the first or in the second half. These two approaches are very similar
to the ones we will discuss in this section. Reading the whole book until we
find the word is called linear search, the searching algorithm in the dictionary
is called binary search. Linear search is more general (it does not require the
array to be sorted), but less efficient than binary search (which requires the
array to be sorted). Note that, in the original problem of finding an element
in an array, nothing prevents us from first sorting the array and then use
binary search.

Now we will present the two algorithms more in detail, and then we will
determine in which cases it is worth it to pay the cost of sorting in order to
gain efficiency in searching (and when not).

2.1.1 Linear search

The idea is very simple. If you have to search a word in the book of algo-
rithms and you don’t have any idea of where it can be (e.g. the word cat),
you simply read the book from the beginning and you stop when you read
the work cat. The pseudocode of the algorithm is the following:

Algorithm 2: LinearSearch(a[], b)

for i = 0, . . . , n do
if a[i] = b then

return i;
end

end
return b is not in the array;

It is clear that, in the worst case scenario, we have to iterate through the
whole array. Since each element of the array requires a constant amount of
elementary operations (just a comparison), we have an asymptotic complex-
ity of O(n).

2.1.2 Binary search

Recall that this algorithm, that only works on sorted arrays, can be remem-
bered with the dictionary analogy. Imagine that you have to search a word
in the dictionary (which is alphabetically sorted). In this case you don’t
search for the word sequentially, but you can do the following. You open
the dictionary in the middle: if the word you are looking for is in that page
you are over, otherwise you know if the word you are looking for is on the
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pages which comes before or after the middle page. Once you know this in-
formation you do the same kind of search in the previous/ following pages.
This idea applies also to sorted arrays: you look at the element in the middle
and (if this was not the element you were searching) then you look only at
the left/ right side of the array. The pseudocode for binary search follows ex-
actly this principle (in order to use it on an array you call BinarySearch(a,
1, n, b)):

Algorithm 3: BinarySearch(a[], min, max, b)

while min ≤ max do
mid← min+max

2 ;
if a[mid]=b then

return mid;
end
if a[mid] < b then

min← mid+1;
end
if a[mid] > b then

max← mid-1;
end

end
return b is not in the array

Here the analysis of the runtime is less straightforward. In particular, the
analysis of the recursive version of the algorithm (that simply applies binary
search either on the left or on the right side of the array) comes to rescue.
With the techniques of the first chapter, we can come up with the following
recursive equation:

T(n) =

{
T( n

2 ) + c if n > 1
c̃ if n = 1

Which gives (for example with telescoping and an induction proof) a worst
case runtime of O(log n).

In class you have seen variants of binary search (e.g. interpolation search
and exponential search). This algorithms have the same worst case complex-
ity of binary search, but they can have a better performance in some cases.
As an intuition recall the dictionary example: if you have to search the word
cat, you will most likely begin your search at the beginning of the dictionary
and then apply the binary search. This works speeds-up a lot searches on
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dictionaries because you have an idea of how words are distributed. You can
also assume a prior distribution of the elements in the array (for example a
uniform distribution) and then use the same trick.

2.1.3 A fundamental trade-off

We have seen that linear search, a general algorithm that works also on
usorted arrays, has a worst case complexity of O(n). We also know that,
on sorted array, we have the binary search algorithm that requires O(log n)
elementary operations. Now the question is: what should we do if we have
an unsorted array? Should we first sort it and then use binary search or
should we directly go with linear search? In order to answer the question,
we need to know the complexity of sorting. For example, if we were able to
sort in O(log n), then the strategy of sorting and using binary search would
be better. On the other hand, if sorting would require O(n2) operations, we
should always go for linear search. In the next sections, we will show some
algorithms to sort arrays with a runtime of O(n log n). We will also show
that we can not do better (in other words, we will show that Ω(n log n) is
a lower bound for comparison based sorting). This insight, which is just a
black box for now, allows us to answer our question. If we have to search for
a single value, then linear search is better (a cost of O(n) against O(n log n)),
but if we have to search k elements, then we have the following.

• k times linear search: has runtime k · O(n) = O(kn).

• Sorting + k times binary search: has runtime O(n log n + k log n).

Depending on the value of k, one of the two strategies is better. In general,
we have:

• k < O(log n): in this case linear search is better (O(n) is better than
O(n log n)).

• k > O(log n) in this case is better to sort and then doing binary search
(in this case in the factor k log n dominates in the runtime of the sort-
ing+searching approach and hence it is more convenient than kn).

2.2 Basic Sorting Algorithms

We have indirectly introduced the problem of sorting in the previous sec-
tion. In particular, we have seen that a sorted array allows a more efficient
searching process. But, how can we actually sort an array? In this section we
present a bunch of basic sorting algorithms. These algorithms are intuitively
easy (they are probably the first algorithms one might come up with) but, as
we will see, not particularly efficient.

15



2.2. Basic Sorting Algorithms

2.2.1 Bubble Sort

Imagine to iterate once through an array a of length n and, every time you
find two elements ai, ai+1 such that ai > ai+1, swap this two elements. After
one iteration, the largest element of the array is located at the right position
(i.e. at the end). By repeating this process n times, we sort the array (at
iteration i, we put the i-th largest element in the right position). This is an
intuitive proof of the correctness of the following sorting algorithm:

Algorithm 4: BubbleSort(a[])

for i = 1, . . . , n− 1 do
for j = 1, . . . , n− 1 do

if a[i] > a[i + 1] then
Swap(a[i], a[i + 1]);

end
end

end

It is easy to see from the pseudocode of the algorithm (two nested for loops
which iterate through the array), that the worst time asymptotic complexity
is O(n2). Note that if, during an execution of the inner loop, we don’t
swap any elements, then the array is already sorted. Hence we can slightly
modify our algorithm such that it stops when the array is sorted. This
gives a best case runtime of Ω(n), but in the worst (and also in the average
case), the runtime is still quadratic. We want to point out that, apart from
a single temporary variable for the swap operation, this algorithm does not
require any additional memory. This is a nice property and we will say that
algorithms that satisfy it are in place.

2.2.2 Selection Sort

Selection sort is an algorithm that logically operates on two subsets S and S̄.
S contains the sorted part of the array, S̄ the unsorted part. Of course, at the
beginning, all elements of the array are in S̄, Then we do n iterations, where
at each iteration we take an element from S̄ and we put it in S. How do we
do it? We just iterate through all elements in S̄. we find the largest one and
we put it as smallest element in S. After n iterations all elements of the array
are in S, i.e. we have sorted the array. More concretely, selection sort can be
implemented as follows.
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Algorithm 5: SelectionSort(a[])

for k = n, . . . , 2 do
Iterate in the first k elements of the array. Let a[m] be the
maximum element in this set. ;

Swap(a[m], a[k];
end

The number of comparisons is n− 1 in the first iteration, n− 2 in the second
one, the n− 3 and so on. We get a total of ∑n−1

i=1 i which, according to the
well known Gauss formula, is again in O(n2). Similarly as bubble sort, also
selection sort is in place.

2.2.3 Insertion Sort

Insertion sort follows a similar idea of how we usually sort a deck of cards.
Similarly as in selection sort, also here we consider a set S of sorted elements
and a set S̄ of elements that still need to be sorted. The difference is how,
at each of the n iterations, an element from S̄ is added to S. Instead of
searching the largest element in S̄, we take an arbitrary one. Then we scan
the sorted sequence S̄ and we find the right place to insert it. In pseudocode,
we have the following.

Algorithm 6: InsertionSort(a[])

for i = 1, . . . , n− 1 do
j← i;
while j > 1 AND a[j] < a[j− 1] do

Swap(a[j], a[j− 1]);
j← j− 1

end
end

A careful analysis of the previous pseudocode would show that the runtime
of insertion sort is the same we have encountered with bubble and selection
sort: we have a worst case of O(n2). The careful reader, at this point, might
think that insertion sort can be implemented in O(n log n): at each iteration,
we have to pick an element from the unsorted set and put it in the right
place in the sorted sequence. The pseudocode above uses linear search to
find the right spot in S but, after all, one could use binary search and be
more efficient. The idea might be true, but the problem is that, once we
have found the right spot in S for the new element, we have to shift the
larger elements to the right in order to make space for the new element. This
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operation requires linear time, and hence the runtime remains quadratic in
the length of the array.

2.3 HeapSort

In the previous section we discussed three sorting algorithms with worst
case complexity O(n2). In the section where we introduced the trade-off
between the cost of sorting and the consequent speed up on searching, how-
ever, we mentioned that it is possible to sort with O(n log n) operations in
the worst case. Heap sort is a first example of algorithm with such runtime
and it is based on the heap data structure. We will discuss heaps in Chapter
3, but we summarize the operations that they support with their respective
complexities here:

• Add/ remove an element to the heap can be done in O(log n)

• Given a set of number, heaps allow to find the maximum element in
the set in O(1)

This data structure is very convenient for our purposes. In facts, we can com-
bine them with the idea of selection sort to obtain an O(n log n) algorithm.
Selection sort just looks for the largest element in the unsorted part S̄ of the
array in linear time and puts it as smallest element of the sorted part S. If
we put the elements of the unsorted part in a heap, however, this operation
can be done in logarithmic time. By repeating this operation until we have
sorted the array, we get the following algorithm.

Algorithm 7: HeapSort(a[])

for i = 1, . . . , n do
Insert a[i] in the heap;

end
for i = 1, . . . , n do

max ← maximum element in the heap;
Put max as smallest element of S and remove max from the heap;

end

And from the specification of the operations (which are stated as black box
in this chapter,but are explained in greater details in Chapter 3) it is clear
that the asymptotic complexity is O(n log n).
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2.4 Merge Sort

In Chapter 1, we mentioned that divide and conquer is a useful paradigm
for algorithm design. Can we also apply it to the sorting problem? The
answer is yes, and the resulting algorithm is called merge sort. Concretely,
the idea is the following:

1. Divide the array in two parts (left part and right part).

2. Sort the left part recursively.

3. Sort the right part recursively.

4. Merge the two sorted parts in a single sorted array.

For sure, we need a base case: this happens when we have either an empty
array or an array containing a single element.

2.4.1 Warm-up: execution on paper

Consider the initial array:

5 2 7 -5 16 12 22 1

We partition the array in the middle and we get the two sub-arrays:

• The sub-array A:

5 2 7 -5

• The sub-array B:

16 12 22 1

This two arrays are sorted recursively. Here is where the magic of recursion
comes into play: you can assume that your algorithm works when you write
your algorithm. We obtain:

-5 2 5 7

and
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1 12 16 22

Now the big question: how can we conquer the problem? How can we merge
the two sorted arrays? The idea is the following: we keep a pointer to the
first element of the A (now sorted) and another pointer to the first element
of B (now sorted). Then we repeat the following task until we are finished:

Which element is smaller? The one indicated by the pointer on A or the one indicated
by the pointer of B? We pick the smallest one and we put it in the solution. Then we
move to the right the pointer which used to point to the smallest element. When one
of the two pointers point out of the array (i.e. we have already put all the elements
of A or B into your solution). At this point, we simply copy the other sub-array in
the solution.

Let’s apply the merge part to the sorted versions of A and B:

A (the bold
element is the
one the pointer
is pointing to)

B ((the bold
element is the
one the pointer
is pointing to)

Sorted array

-5, 2, 5, 7 1, 12, 16, 22 ∅
-5, 2, 5, 7 1, 12, 16, 22 -5
-5, 2, 5, 7 1, 12, 16, 22 -5, 1
-5, 2, 5, 7 1, 12, 16, 22 -5, 1, 2
-5, 2, 5, 7 1, 12, 16, 22 -5, 1, 2, 5
-5, 2, 5, 7 1, 12, 16, 22 -5, 1, 2, 5, 7

At this point we are over since the pointer in A is over the last element. We
just have to copy the part from the pointer to B to the end of B in the sorted
array and we get

-5 1 2 5 7 12 16 22

as desired.

2.4.2 Analysis

We can analyse merge sort with the same method used for the previous
divide-and-conquer algorithms. The first question is: what is the complexity
of merging the two sorted sub-arrays? Since we do a constant number of
operations for every element of both arrays (hence c · n operations for an
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Algorithm 8: MergeSort(a[])

if a has length 0 or length 1 then
return a;

end
le f t←MergeSort(first half of a);
right←MergeSort(second half of a);
le f tPointer ←1;
rightPointer ← 1;
S← ∅;
while le f tPointer < lengtho f le f t AND rightPointer < lengtho f right

do
if le f t [le f tPointer] ≤ right [rightPointer] then

S← S ∪ le f t [le f tPointer];
le f tPointer ← le f tPointer + 1;

end
else

S← S ∪ right [rightPointer];
rightPointer ← rightPointer + 1;

end
end
Add the array which still has a pointer inside into S

appropriate constant c), we have that the complexity of merging is O(n).
The final runtime will be (under the assumptions that T(1) = 1 and that n
is a power of two, i.e. n = 2k):

T(n) = 2T(
n
2
) +O(n)

= 2(2T(
n
4
) +

n
2
) +O(n)

= 4T(
n
4
) + 2O(n)

= . . .
= kT(1) + kO(n)

From the last step, since k = log n, we deduce that merge sort has a com-
plexity of O(n log n).

A very important observation is that MergeSort is not in place. In facts, for
the merging part, we need extra space for storing the solution. This means
that the algorithm has a complexity ofO(n), but it needs Θ(n) extra memory.
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For this reason we still want to do better: we want an O(n log n) algorithm
which is in place. We will illustrate a candidate algorithm that satisfies these
goals in the next section.

2.5 Quick Sort

In the previous section we have seen that merge sort has a worst-case com-
plexity of O(n log n). However, to merge two sub-arrays of length n

2 , we
need Θ(n) extra place. Here we present an algorithm that is very similar
to merge sort (it also follows the divide and conquer paradigm), but it does
not have to perform a merge in order to be correct. In facts, if we know that
all entries in the left sub-array are less equal than the entries in the right sub-
array, we do not have to merge them (and hence we need only constant extra
place). As we will see, quick sort is a solution in this sense. However quick
sort has to face a performance challenge: merge sort has a worst-case com-
plexity of O(n log n) because we know that the left and right sub-arrays that
we sort recursively have n

2 elements. As we will see, it is not easy to perform
a partition and at the same time keeping the recursion tree balanced. Quick
sort is great because we perform the partition to save the extra space and we
expect the recursion tree to be almost balanced, i.e. we expect a complexity of
O(n log n). More concretely, the idea is the following.

1. We pick an arbitrary element p of the array (p is called pivot).

2. We create a sub-array A with all the elements ≤ p and sort this sub-
array recursively.

3. We create a sub-array B with all the elements > p and sort this sub-
array recursively.

4. The final sorted array is the union of A⊕ p⊕ B1.

Observe that this in only an intuition. The previous ”algorithm” does not
provide any base-case and it is only a naive ”implementation” since we
want quick sort to operate in place. In order to be more comfortable with
the algorithm we consider a concrete example.

Consider the initial array:

5 2 7 -5 16 12 22

We chose 7 as the first pivot. After the first partition we get:

1With ⊕ we denote the union of two arrays
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• The sub-array A:

5 2 -5

• The sub-array B:

16 12 22

First, we sort A. We chose 2 as pivot. The set AA of elements ≤ 2 contains
-5 (base case). The set AB of elements > 2 contains 5 (base case). Now we
know that AA⊕ 2⊕ AB is sorted. So we get that A sorted is:

-5 2 5

Then, we sort B. We chose 22 as pivot. The set BA of elements ≤ 22 contains
16 and 12. The set BB of elements > 22 is empty (base case). We have to sort
BA recursively (we omit it here) and we obtain:

12 16

Now we know that BA⊕ 22⊕ BB is sorted. So we get that B sorted is:

12 16 22

Now we complete the task for A. The result is A⊕ 7⊕ B.

-5 2 5 7 12 16 22

2.5.1 Implementation tips

In the official lecture notes, you can find a pseudocode for quick sort that
works only on array with pairwise different elements. Here, we present
an alternative implementation which works as well with duplicate elements
(and it is also in place).
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Algorithm 9: QuickSort(a[], left, right)

leftPointer← left;
rightPointer← right;
pivot← a[right];
while leftPointer ≤ rightPointer do

while a[leftPointer] < pivot do
leftPointer← leftPointer + 1;

end
while a[rightPointer] > pivot do

rightPointer← rightPointer - 1;
end
if leftPointer ≤ rightPointer then

Swap(a[leftPointer], a[rightPointer]);
leftPointer← leftPointer + 1;
rightPointer← rightPointer - 1;

end
end
if left < rightPointer then

QuickSort(a, left, rightPointer);
end
if leftPointer < right then

QuickSort(a, leftPointer, right);
end

The procedure QuickSort(a, left, right) sorts the array a from the index at
the position left to the position at the position right. This means that when
we want to sort an array a with n elements we call QuickSort(a, 1, n).

The idea is very similar to the one of the script. We have two bounds of
the array (these are saved in the variables le f t and right). Then we instan-
tiate two pointers le f tPointer and rightPointer for which the following in-
variant is true: all elements left of le f tPointer are less equal the value of
the pivot (analogously all elements right of rightPointer are greater equal
the value of the pivot). The loop in the lines 4-12 performs the partition
(i.e. it puts le f tPointer as right as possible and it puts rightPointer as left
as possible). Note that after the execution of this loop between rightPointer
and le f tPointer there is the pivot (or more instances of the pivot). From
the fact that rightPointer ≤ le f tPointer and the invariants we see that we
have performed a correct partition. If there are still elements on the left of
rightPointer we sort this part of the array and if there are still elements on
the right of le f tPointer we sort this part of the array recursively.
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2.5.2 Analysis

Quick sort is correct for an arbitrary choice of the pivot p. The performance,
however, strongly depends on the choice of p. Quick sort on an array of
length n has the best performance if it contains n

2 elements smaller equal
the pivot and n

2 elements greater than the pivot (and of course all sub-arrays
must choose the pivot in the middle). The intuition is that we want the sub-
trees of the recursion tree to be as balanced as possible. But imagine that we
take always the smallest (or the greatest) element of the list as pivot. What
is the asymptotic complexity in this case? To do the partition we need to
look at n− 1 elements and since in this case every time we call quick sort on
an array of n− 1 element we obtain (consider T(1) = 1):

T(n) = T(n− 1) +O(n)
= T(n− 2) + 2O(n)
= . . .
= T(1) + nO(n)
∈ O(n2)

Let’s now take a look at the complexity if we choose a good pivot (which
partitions the initial array in two array of more or less the same length).
Assume that T(1) = 1 and that n is a power of two, i.e. n = 2k.

T(n) = 2T(
n
2
) +O(n)

= 2(2T(
n
4
) +

n
2
) +O(n)

= 4T(
n
4
) + 2O(n)

= . . .
= kT(1) + kO(n)

From the last step, since k = log n, we deduce that quick sort has a best case
complexity of O(n log n). But why should we consider quick sort (that has
a worst complexity of O(n2)) if we have merge sort that has a worst case of
O(n log n)? There are two main reasons:

• Quick sort has an average complexity ofO(n log n) and, as you will see
in the next semester, choosing the pivot p uniformly at random leads
to a very good performance. In practice, randomized quick sort is
considered better than merge sort. In this particular case, the situation
where the complexity is quadratic is very rare: in facts, an ”unlucky”
pivot must be chosen (too) many times.
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• Merge sort needs Θ(n) extra space in order to merge the two sorted
sub-arrays. Quick sort is in place and this is a desirable property.

Intuitively we see that quick sort needs only constants extra place because
it uses only the initial array and some temporary variables. However, as
you will see in Systems Programming and Computer Architecture, for every
recursive call, some space is allocated in memory. In particular with quick
sort, we need O(n) recursive calls, and each of them needs at least constant
place. Actually there is a trick (see script for details) to avoid this issue, but
this requires an even more involved implementation.

2.6 Lower Bound

In this chapter, we have introduced six sorting algorithms. Three of them
(heap sort, merge sort and quick sort) have worst time complexityO(n log n).
In our discussion about the searching/ sorting trade-off, we mentioned that
we can not find a sorting algorithm that uses less elementary operations than
that in the worst case. A more precise statement would be that Ω(n log n)
is a lower bound for comparison based algorithms. This means that, in the
general case, we can’t do better. Of course, in some special situations, we can
design faster algorithms. For example, if we would have to sort an array that
contains just zeros and ones, we could iterate through the array, count how
many zeros and ones we encounter, and create a new array with the number
of counted zeros followed by the number of counted ones. This is just an ex-
ample, but there are also additional situations where sorting in linear time is
possible. If you are interested, we refer to the literature of algorithms such
as bucket and radix sort. Note that when we speak about lower bounds,
we usually mean the lower bound considering non parallel algorithms. In
the second semester you will in facts see some parallel algorithms for sort-
ing. A classical example is bitonic sort, which runs in O(log2 n) under the
assumption, that there are infinite processors available.

But why can’t comparison based sorting algorithms do better than Ω(n log n)?
The first important observation towards a proof is that every algorithm can
be represented as a decision tree. The number of leaves of this decision tree
must be equal to the number of possible different sorting sequences. For
an array of n number, there can be up to n! sequences if all elements are
pairwise different. Hence the decision tree can have n! leaves.

Now we show that a binary tree with n leaves has height at least log n. In
order to do this we first prove that the number of leaves in a tree of height h
is no more than 2h leaves by induction on h.

• h=0 The tree consists of a single node and hence has 20 leaves as re-
quired.
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• Induction hypothesis: assume all trees of height h has ≤ 2h leaves.

• Induction step: we have to show that trees of height h + 1 have ≤
2(h + 1) leaves. Consider the left and right subtrees of the root. These
are trees of height no more than h, one less than the height of the
whole tree. Therefore, by induction hypothesis, each has at most 2h

leaves. Since the total number of leaves is just the sum of the numbers
of leaves of the subtrees of the root, we have n = 2h + 2h = 2(h + 1), as
required. This proves the claim.

Now that we have proven that a tree with height h has ≤ 2h leaves, we prove
that a tree with n leaves has height ≥ log n. Assume that there exist a tree
with n leaves and height α < log n. By the previous lemma we now that the
tree can’t have more than 2α leaves. Since we assumed α < log n we have
that this tree has less than n elements, which is a contradiction. Hence we
have proven that a tree with n leaves has height ≥ log n.

Back to the original problem: we have a tree with n! leaves and we know that
the height of the decision tree is equal to the number of comparisons done
by the algorithm. Since the tree has n! leaves, it must have height ≥ log(n!).
We have log(n!) ≤ log(nn) ≤ n log n, hence the height of the tree must be
greater equal than n log n. Hence we have that Ω(n log n) is a lower bound
for comparisons based algorithms.
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Chapter 3

Data Structures

This course is called Algorithmen and Datenstrukturen. In Chapter 2, we have
discussed searching and sorting algorithms, a classical example of introduc-
tory classes that is useful to show what algorithms are. In a nutshell, algo-
rithms are well-defined procedures that transform an input into an output
according to the specification of an ”interesting” problem. In Chapter 1, we
briefly mentioned that data structures are strictly connected to algorithms
and that they are used to represent data in a convenient way. In this chapter
we want to dive deeper into the concept of data structure. The first, crucial
observation, is that it is useful to have a clear separation between the con-
cept of abstract data type (ADT) and the concept of data structure. We have
the following definitions.

• ADTs are analogous to an interface in Java. Every ADT declares the
operations that will be correctly implemented by data structures.

• Data Structures are concrete implementations of the operations de-
clared by ADT. The goal is to implement those operations as efficiently
as possible.

ADTs and Data Structures are useful to achieve modularity. In facts, when
we describe an algorithm, we can mention the use of a given ADT and
use its operations as blackbox. Moreover, if we know a data structure that
guarantees that the operations of the ADT are implemented with a certain
runtime, we can assume that behaviour when we analyse the asymptotic
complexity of the algorithm. This is particularly convenient, because we can
have a pool of data structures and, when we have to face a design decision
in the creative processing of coming up for an algorithm that solves a given
problem, we can look for a convenient data structures that implements the
required operations in an efficient manner. In this chapter we will take a look
to some of the most important data structures that have proven themselves
to be very useful in many situations.
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3.1 Basic data structures

3.1.1 Arrays

Arrays are the first very simple data structure you have learned in the course
Introduction to programming. Arrays can be imagined as a sequence of adja-
cent cells in memory, where all cells save elements of the same type. For
example, an array of length 24 of type int, can be imagined as a list of 24 ad-
jacent cells in memory, where each cell contains an integer number. Strictly
speaking, this is an approximative view of what an array really is, but this
goes beyond the scope of this course. All basic operations on array (read/
writing an element at a given offset) require O(1) time. Declaring an array
of size n requires O(n) (both in space and in time).

3.1.2 Lists

A list is somehow similar to an array (basically an array does the same things
as a list), but there are some slight differences:

• In an array two adjacent elements (e.g. the element at offset 0 and the
element at offset 1) are also adjacent in memory.

• Adding an element in a list requires constant time (simply some work
with pointers), while in an array linear time (because we have to de-
clare another longer array).

3.1.3 Stack

The stack is a very important ADT (which is used for example in DFS, a
graph algorithm that will be presented in Chapter 4). It can be easily im-
plemented with a list and it supports three basic operations, which all take
O(1):

• Push(x, S): pushes element x in top of the stack S.

• Pop(S): removes the element on top of the stack and returns it.

• Top(S): returns the element on top of the stack without returning it.

The stack is a LIFO data structure: this means that the last element pushed
in the stack is the one that will be popped. An analogy would be the stack
of trays at the Polymensa: the last tray is the first that will be picked again.

3.1.4 Queue

Another important basic data structure (used for example in BFS, another
graph algorithm that we will study in Chapter 4) is the queue. It is anal-
ogous to a stack (i.e. all basic operations are analogous to the one of the
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stack and they also can be implemented with lists in constant time). The
difference is that the queue is not a LIFO data structure, it is known as a
FIFO data structure: the last element who enters the queue will be the last
to be taken out. An analogy would be the queue at the Polymensa: the first
who arrives will be the first to eat.

3.1.5 Union-Find

The union-find is an abstract data type which must implement the following
operations:

• Make(v): add isolated node v.

• Union(u,v): put nodes u and v in the same component.

• Same(u,v): decide whether nodes u and v are in the same component
or not.

We can implement it as follows: we save an array with the length of the total
number of nodes and in rep [v] we save the unique node which represents
the component of v. In order to do make we initialize rep [v] = v for all
nodes. This operation requires linear time in the number of nodes. In order
to check whether u and v are in the same component we check in constant
time whether the unique nodes which represent u and v are the same or not.
A naive way to implement the union would be to iterate through all nodes
in the data structures and, for all nodes k with rep [k] = u, we set rep [k] = v.
This would take linear time. A better way would be to keep a list of the
nodes k for which rep [k] = u so that, instead of iterating through all nodes
in the data structure, we just need to iterate through the elements in this
list. This trick (known as compression trick) is useful in order to get a more
efficient version of Kruskal’s algorithm, as we will see in Chapter 4.

3.2 Priority Queue and Heaps

We have seen the Queue ADT, where we have (analogously to the queue at
the Polymensa) a first come first served principle. Now we see a more particular
kind of queue. Imagine that at the Polymensa each student arrives with a
given priority (based for example on how much time he has for lunch). If
a student arrives with better priority than all others student in the queue
he will jump in the front and he will be the first to be served. Oppositely,
if a student has a lot of time and arrives early in the queue, he might wait
very long if the students that come afterwards have a better priority than
him. This is exactly the idea behind the priority queue ADT. This ADT
implements the following operations:

• Insert(P, x): inserts the elements x in the priority queue P.
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• Maximum(P): returns the element with maximum priority in the queue
P.

• ExtractMax(P): removes and returns the element of P with largest
priority.

• IncreaseKey(S, x, k): increases the priority of element x to the value
k.

Before we present how to implement such an ADT, we present a particularly
convenient data structure: the max-heap. We begin with an example. An
heap (although it is saved in an array) can be visualized as a tree:

The following statements should help you to fully understand the important
properties of an heap:

• The height of a heap with n elements is O(log n).

• All children (not only the direct ones, but all the children until the
leafs) of n are smaller than the value of n. Intuitively: all keys that are
”below” a given node have a smaller key than that node.

• Although heaps can be visualized as trees, they are stored in a normal
array. To build the array from the tree we read the tree level by level
from left to right. In this case we have: 100, 19, 36, 17, 3, 25, 1, 2, 7.
More formally, we have:

– Parent(i) = b i
2c

– Left(i) = 2i

– Right(i) = 2i + 1

From this we can summarize the max heap property by: A[parent(i)] ≥
A[i] (the min heap property has ≤ instead of ≥).

Now we take a look at two very important functions in order to use heaps:
Max-Heapify and Build-Max-Heap.
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In order to maintain the max-heap property, we call MaxHeapify(A, i) with
an array A and an index i as inputs. When we call this method, we assume
that the trees at the left and at the right of i are max heaps, but the key
A[i] might be smaller than one of its children. After we call the procedure
MaxHeapify we want the tree rooted at i to be a max heap.

Algorithm 10: MaxHeapify(A, i)

l← Left(i) ;
r← Right(i) ;
largest← Argmax(A[l], A[r], A[i]) ;
if largest> i then

Swap(A[i], A[largest]);
MaxHeapify(A, largest);

end

The idea is the following: since the trees at the left of i and at the right of i
are max heaps, the direct children of i are maxima of their sub-trees. This
implies the element at index i (in order to satisfy the heap property), must
contain the maximum between i, the element left of i and the element right
of i. If i is the maximum, then we already have a max heap, otherwise we
have to swap A[i] with A[max(le f t(i), right(i)] and to perform the procedure
MaxHeapify again from max(le f t(i), right(i). What about the complexity of
this procedure? We know that heaps have logarithmic height and the single
call to the procedure (without recursive calls) is constant. Hence we have a
complexity of O(log n).

What do we have to do if we have an array which does not satisfy the max
heap property at all? We have to perform the MaxHeapify procedure start-
ing from the bottom level and then iteratively upwards until we get to the
top. Since the leafs trivially satisfy the heap property, we can start from the
bottom level of inner nodes. This gives us the following pseudo-code:

Algorithm 11: BuildMaxHeap(A)

for i = b A.length/2 c, ..., 1 do
MaxHeapify(A, i);

end

Note that we started from half of the length of the array because all elements
which are after that index are leafs. Although at first sight you may think
that the complexity of Build-Max-Heap is O(n log n), it is actually only
O(n). We don’t go into details now because we use this procedure only in
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the context of HeapSort (not for priority queues) and hence we don’t care if
it is O(n log n) or O(n). After all, in order to get the O(n log n) complexity
of heap sort, we don’t require linear time for this operation.

Now that we have learned heaps we can implement the procedures of the
priority Queue ADT. In order to do that, we can instantiate an array which
we know it is long enough and we save a variable heapLength which tells us
until which index of the array we have elements of the heap. This trick is
useful, because if we want to add an element to the array we don’t have to
create a new one, but we simply change the value of this pointer. Getting the
maximum simply means reading A[1]. so this goes in constant time. Let’s
take a look at the other three procedures.

ExtractMax We print the first element of the array, then we swap it with
an arbitrary leaf and we restore the heap condition. After we extracted the
max we have to reduce the heapLength by one.

Algorithm 12: ExtractMax(A)

max← A[1];
Swap(A[1], A[heapLength];
MaxHeapify(A, 1);

This operation runs in O(log n). Note that the implementation of Max-
Heapify before has to be slightly be modified to support the heapLength
pointer (the previous implementation considers that the heap goes from 1
to A.length instead that from 1 to heapLength).

IncreaseKey To implement this procedure we first increment the value of
the node, than we go iteratively upwards in the tree and we exchange the
node with the parent if the key of the node is greater than the one of the
parent.

Algorithm 13: IncreaseKey(A, i, key)

A[i]← key;
while i > 1 AND A[Parent(i)] < A[i] do

Swap(A[i], A[Parent(i)]);
i← Parent(i);

end

This procedure also has complexity O(log n).
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Insert To insert a key in the heap we can increase the heap size by one, set
the value at A[heapLength] to minus infinity and then use the IncreaseKey

procedure we have implemented. This also goes in O(log (n))

Algorithm 14: Insert(A, x)

heapLength← heapLength + 1;
A[heapLength]← −∞ ;
IncreaseKey(A, heapLength, x);

3.3 Data Structures for Dictionary

In this section we aim to implement an efficient data structure for an ADT
that performs the following operations:

• Search(x, V): is the element x in the data structure V?

• Insert(x, V): insert the element x in the data structure V.

• Remove(x, V): delete the element x from the data structure V.

We are going to see several possible solutions, but the best data is called AVL
tree and performs every operation in O(log n). Of course, our portfolio of
options includes simple data structures such as arrays (that perform the
three operations in linear time if unsorted and support a logarithmic search
if sorted), lists (where the runtime for the operations is strongly related on
the implementation, but at least linear time is required for searching) and
heaps (that also require linear time for all operations). In this section we are
going to study two more interesting options: binary search trees and AVL
trees, an improved version of binary search trees.

3.3.1 Binary search tree

Similarly as a simple unsorted array, binary search trees require O(n) for all
three operations in the worst-case. Although this does not look encouraging,
we need to study them carefully. The reason is not only that we need them to
understand AVL trees, but also because they are a prominent data structure
in computer science.

Let’s take a look at the fundamental properties of binary search trees:

• In binary search trees we have the following properties. Given a node
n with key k we have:

– If l is the left child of n, the key of l is ≤ k and the keys of all
children of l are ≤ k.
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– If r is the right child of n, the key of r is ≥ k and the keys of all
children of r are ≤ k.

• 8 is the root of the tree. It has a left child with key 3 and a right child
with key 10.

• The node n with key 10 has a right child with key 14 and has no
left child (in a programming oriented way of seeing the problem, the
leftNode of n is NULL).

• The node with key 13 is a Leaf. This means that both its leftNode and
rightNode are NULL.

You can think at a Node as an object in Java with a key attribute (of type
double), a leftChild attribute (of type Node) and a rightChild attribute (also
of type Node). When a node does not have a left child (or a right child), it
simply stores NULL in the attribute. For example a leaf with key 13 will
have two NULL attributes.

We now take a look at how to implement the three dictionary operations.

Search When we search for a value v in a tree starting from node n (at the
beginning of the search n is equal to the root) we have three cases:

• The value of the key of n is equal to v. In this case we return true.

• The value of the key of n is greater than v. We know that a node with
value v might be on the left of n, but not the right. For this reason we
call our Search method recursively on the left child of n.

• The value of the key of n is less than v. We know that a node with
value v might be on the right of n, but not on the left. For this reason
we call out Search method recursively on the right child of n.
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After this observation we can implement a Search routine. To search a
value v on a binary search tree T we call Search(v, root(T)).

Algorithm 15: Search(v, N)

if N = NULL then
return false;

end
if N.key < v then

Search(v, N.left);
end
if N.key = v then

return true;
end
if N.key > v then

Search(v, N.right);
end

A single call to the search method goes in O(1). Since we call the method
maximally h times (where h is the height of the tree), the asymptotic com-
plexity of the Search method is O(h).

Insert The first key observation in order to implement the Insert operation
is that, when we insert a node M in a tree T, M will be a leaf in the final
tree T′. Insert is very similar to search (because we have to insert the new
node in the right place in order to maintain the binary search tree property).
Basically the implementation is equal to the one of the Search function, we
just have to insert the value before calling the method on a NULL node.
Concretely we have this implementation (where we assume that we do not
insert a node with a key which is already in the tree). Note that to insert a
node M in a tree T we have to call Insert(M, N):

The complexity of this implementation is O(h) for the same reasons we
stated for Search.

Delete We have three possible cases about the node we want to delete:

• The node n is a leaf (i.e. both left and right children are NULL). In
this case we just have to set the pointer of the parent to n to NULL (i.e.
if n is a left child we set the leftChild attribute of its parent to NULL,
otherwise we set the rightChild attribute of its parent to NULL).

• The node n is not a leaf, but either its left child or its right child is
NULL. We call c the (only) child of n. In case n is the left child of its
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Algorithm 16: Insert(M, N)

if N.key < v AND N.left 6= NULL then
Insert(M, N.left);

end
if N.key < v AND N.left = NULL then

N.left = M;
end
if N.key > v AND N.right 6= NULL then

Insert(M, N.right);
end
if N.key > v AND N.right = NULL then

N.right = M;
end

parent, we set the left child of the parent of n to c. In case n is the right
child of its parent, we set the right child of the parent of n to c.

• The node n in an inner node (i.e. both its left and right child are not
NULL). In this case we have to replace the key of n with the key of
its symmetric successor (i.e. ”go once right and then all the way left
until we find a leaf”) or of its symmetric predecessor (i.e. ”go once
left and then all the way right until we find a leaf”). The symmetric
predecessor and successor of n are the only nodes which contain a key
than can substitute the key of n without breaking the binary search
tree property.

We use the previous observations to produce the following pseudo code
for the Delete method. To delete a value v from a root T we have to call
Delete(v, root(T)). We don’t provide an implementation of the method
SymmetricSuccessor(N): this should be simple as you just have to itera-
tively go left on N.right until you find NULL.

The asymptotic complexity of Delete is also O(h).

We have seen that all dictionary operations on a binary search tree have
complexity O(h). This is a problem because, if the tree consists of a list of
strictly increasing (or decreasing) values inserted in ascending (or descend-
ing) order, the tree degenerates to a list. In this case the height is equal to the
number of nodes and hence we get complexity O(n) for all three operations
(which is bad, this is exactly the same complexity we have with unsorted
arrays, the most naive data structure for dictionaries).

Before we move to a solution to this issue we explain the three standard
ways to ”read” a tree: pre-order, post-order and in-order.
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Algorithm 17: Delete(v, N)

if N = NULL then
return NULL;

end
if v < N.key then

N.left = Delete(v, N.left);
end
if v > N.key then

N.right = Delete(v, N.right);
end
if N.left = NULL then

return N.right;
end
if N.right = NULL then

return N.left;
end
if N.left 6= NULL AND N.right 6= NULL then

N.key = SymmetricSuccessor(N).key;
Delete(N.key, N.right);
return N;

end

• In order simply means: read the elements of the tree in ascending
order. In the case of the figure we have 1, 3, 4, 6, 7, 8, 13, 14.

• Pre-order means: read the root first, then the left part of the tree in
order and then the right part of the tree in order. In the example of the
figure we get: 8, 3, 1, 6, 4, 7, 10, 14, 13.

• Post-order means: read (recursively) the left part in the post order
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Algorithm 18: InOrder(N)

if N.left 6= NULL then
InOrder(N.left);

end
Print(N.key);
if N.right 6= NULL then

InOrder(N.right);
end

Algorithm 19: PreOrder(N)

Print(N.key);
if N.left 6= NULL then

PreOrder(N.left);
end
if N.right 6= NULL then

PreOrder(N.right);
end

manner, then do the same with the right part and finally read the
value of the root. In the example of the figure we get: 1, 4, 7, 6, 3, 13,
14, 10, 8.

Algorithm 20: PostOrder(N)

if N.left 6= NULL then
PostOrder(N.left);

end
if N.right 6= NULL then

PostOrder(N.right);
end
Print(N.key);

3.3.2 AVL tree

AVL trees are the most efficient dictionary data structure we study. They
are very similar to binary search trees, but they have worst-case complexity
O(log n) for all operations. How is this possible? For binary search trees
we saw that the complexity is O(h). AVL trees are balanced binary search
trees or, in other words, we have h ∈ O(log n). How can we achieve that?
We say that AVL trees respect the AVL property, i.e. for every node in the
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tree the height of the left and right sub-tree differ by at most one. In order
to prove that if the AVL condition is respected we have logarithmic height
(in asymptotic notation) one could proceed by induction and show that the
height of a binary search tree that respects the AVL property is ≤ 1.44 log n.
We omit the details. It is more interesting to discuss how to maintain the
AVL condition when inserting a new node in the tree. For every node, we
save its balance, i.e. the difference of the height of its right sub-tree and
its left sub-tree. We then call a function Upin that, if required, updates
the content of the balance of each node. We observe that the balance of a
node can change with the insertion of a new key in the AVL tree only if it
is on the direct path from the root to the new node, and hence an upper
bound for the number of calls of the Upin function is O(log n) by induction
hypothesis. But what happens if, when we call the Upin function, we break
the AVL property on a given node? The key is to use rotations to repair it
and to have a new AVL tree containing the new key. All rotations simply
require to change some pointers, and hence can be performed in constant
time. The following figures depict both how rotations are performed and in
which case a certain rotation should be picked.
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Chapter 4

Graph Theory

We define a graph, denoted G = (V, E), as an abstract data type composed
by n nodes and m edges, where each edge links two nodes belonging to the
nodes set. We can visualize a graph as follows:

4.1 Data Structures for Graphs

As we have seen in the previous chapter, we need data structures to con-
cretely instantiate a graph. In this chapter, we present three canonical solu-
tions: adjacency matrices, adjacency lists and a list of edges.

4.1.1 Adjacency matrix

We can represent a graph G = (V, E) as a matrix with |V| rows and |V|
columns. The entry (i, j) has value 0 if there is not edge between the nodes
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i-j and has value w if there is an edge between nodes i and jJ with weight w
(in the case of unweighted graphs, all edges have weight 1). In the case of
the previous image we would have the following adjacency matrix:

0 3 0 7 8
3 0 1 4 0
0 1 0 2 0
7 4 2 0 3
8 0 0 3 0


Note that if the graph is undirected (i.e whenever we have an edge between
i and j, we also have an edge between j and i), the matrix is symmetric, i.e.
AT = A.

As the reader might expect, we need to implement some operations on a
data structure that represents a graph. Let’s take a look at the asymptotic
efficiency of some common operations on adjacency matrices.

• Memory space: O(|V|2)
• Add vertex: O(|V|2)
• Remove vertex: O(|V|2)
• Add edge: O(1)
• Remove edge: O(1)
• Are u and v adjacent? O(1)
• Given a node v, find deg(v): O(|V|)
• Given a node v, give an arbitrary neighbour of v: O(|V|)
• Given a node v, find all incidents edges to v: O(|V|)

4.1.2 Adjacency list

A major drawback of adjacency matrices is that they waste a lot of space
in the case of sparse graphs, i.e. when m << n2. A natural solution to
avoid this waste is to store only the edges that are present in the graph as
a list of lists. Of course, in the case of a complete graph, an adjacency list
degenerates to an adjacency matrix. Concretely, an adjacency list provides
a list for every node. The list of node u contains all v and w such that
(u, v, w) ∈ E. In the case of the previous image we would have the following
adjacency list:

{[(0, 1, 3), (0, 3, 7), (0, 4, 8)], [(1, 0, 3), (1, 3, 4), (1, 2, 1)], [(2, 1, 1), (2, 2, 3)],
[(3, 2, 2), (3, 1, 4), (3, 0, 7), (3, 3, 4)], [(4, 0, 8), (4, 3, 3)]}
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Similarly as we did for adjacency matrices, we not look at the runtime of
some common operations on adjacency lists.

• Memory space: O(|V|+ |E|)

• Add vertex: O(1)

• Remove vertex: O(|E|). You can do it in O(1) if you implement it in
a clever way, think about it and if you don’t find the solution you can
ask me ;)

• Add edge: O(1)

• Remove edge: O(|V|)

• Are u and v adjacent? O(min(deg(u), deg(v)))

• Given a node v, find deg(v): O(deg(v))

• Given a node v, give an arbitrary neighbour of v: O(1)

• Given a node v, find all incidents edges to v: O(deg(v))

We observe a general trend: the efficiency of most operations is inversely
proportional to the number of edges. In general, the choice between adja-
cency lists and adjacency matrices is critical, and we will see examples later
on of algorithms that are slower on adjacency matrices than in adjacency
lists.

4.1.3 List of edges

A third data structure for graphs is the list of edges. Here, we simply do a
list of |E| tuples (u, v, w), where u is the source node, v the destination node
and w the weight of the edge. In the case of the previous image we would
have the following list:

[(0, 1, 3), (0, 3, 7), (0, 4, 8), (1, 0, 3), (1, 2, 1), (1, 3, 4), (2, 3, 2),
(2, 1, 1), (3, 2, 2), (3, 1, 4), (3, 0, 7), (3, 4, 3), (4, 3, 3), (4, 0, 8)]

Note that if the graph is undirected we can either put directed edges in the
list (as in the example) or undirected edges (i.e. instead of putting (0, 1, 3)
and (1, 0, 3) we put only one of the two possibilities with the convention
that we consider the graph undirected). Pay attention to the fact that the list
does not have to be sorted in any way! Now we take a closer look of the
asymptotic efficiency of some common operations on list of edges (in those
cases the facts whether we put |E| or 2|E| edges in the graph is irrelevant).

• Memory space: O(|E|)

• Add vertex: O(1)
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• Remove vertex: O(|E|).

• Add edge: O(1)

• Remove edge: O(|E|)

• Are u and v adjacent? O(|E|)

• Given a node v, find deg(v): O(|E|)

• Given a node v, give an arbitrary neighbour of v: O(|E|)

• Given a node v, find all incidents edges to v: O(|E|)

4.2 Searching on Graphs

Now that we introduced the concept of graph and three famous data struc-
tures to represent them, we can finally see some first examples of graph
algorithms. Depth-first-search (DFS) and Breadth-first-search (BFS) are two
very useful examples. Given a graph G, they give an answer to the ques-
tion: starting from node u, which nodes of the graph can I reach? As we will see
later, although the two algorithms solve the same problem, they are both
necessary since they allow us to solve some more advanced problems.

4.2.1 DFS

DFS exploits the idea of going deep in the graph. We start from a node and
we follow an (arbitrary) path (although usually there is some convention,
for example we do it in alphabetical order). After the path is finished, we
go one step back and we start a recursive DFS from there. When we have
visited every possible node, the search is over. With the help of an array that
keeps track of all visited nodes in the graph, at the end of the search we will
be able to discover which nodes are reachable from the starting node and
which nodes are unreachable in the case of a disconnected graph.

We want to discuss four aspects of DFS: a concrete example; the pseudocode
of the iterative version; an informal proof of the correctness and its runtime.

We introduce the example of DFS on the following graph:

We start DFS from node A and we visit nodes in alphabetical order. It is
convenient to write the result in red. We start from node A. Starting from A,
we can reach B, C and D in one step. Since we decided to go in alphabetical
order the second node we visit is B. Now we go on from B and the next
node (who wins the race against E) is C. Since C has not outgoing edges we
can not continue the search from C, hence we go one step back (and hence
we go back to node B) and we do DFS from B. B has two edges: one to C
(which we have already visited) and one to E (which we haven’t visited yet).
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This means that we visit node E and we continue the DFS from there. E has
only an outgoing edge to A (which we have visited since it is the starting
point of this DFS). This means that we have to go one step back to B. All
nodes reachable in one step from B have been visited, hence we do another
step back to A. A has outgoing edges to B (already visited), to C (already
visited) and to D (not visited yet). Hence we visit D and we continue the
DFS from there. D can reach in one step nodes C (already visited) and F. We
visit F and we continue from there. F can only reach C in a single step and,
since C has already been visited, we go one step back to D. D can reach C
and F (both already visited) so we go another step back to A. A can reach
B, C and D in a single step and, since they all have been already visited, the
DFS is over. Note that we have not visited G and H: this happened because
in facts it is impossible to reach them!

Now we go on with our program and we propose a pseudocode for the
algorithm. Note that the stack data structure is a very useful tool that comes
at rescue to manage the nodes.

Algorithm 21: DFS(G, v)

S← ∅ ;
Push(v, S) ;
while S 6= ∅ do

w← Pop(S);
if w not yet visited then

Visit w;
for each (w, d)∈ E in the reverse order do;
if d not yet visited then

Push(d, S);

Before we discuss the runtime of DFS, we briefly discuss its correctness. Our
goal is to show that if a node is reachable from the starting point, it will in
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fact be visited. We can argue that the algorithm terminates if and only if
the stack is empty. Every node which goes into the stack will be marked as
visited (because when the algorithm terminates the stack is empty and when
we pop a node from the stack we mark it as visited). All elements that go
into the stack are reachable from the starting point (because we use edges
from a node in the stack to it and hence we have an inductive argument
1) and if an element is not visited it means that is not reachable from the
starting point. To proof this assume that there is a unique node k which is
reachable from the starting point but never gets visited. If it is reachable
from the starting point than there is another node t such that there is a path
from the starting point to t and (t, k) ∈ E. However when t is visited, by
the definition of the algorithm, we will push to the stack all nodes reachable
from t and, since k is reachable from t, it will be pushed into the stack and
hence visited.

The asymptotic complexity of the algorithm is Θ(|V|+ |E|) if we use an ad-
jacency list (and O(|V|2) if we use an adjacency matrix). To see this consider
that when we pop a node from the stack we do some work with it if and
only if it was not yet visited. This can happen |V| times (since we push at
most |E| elements in the stack, the pop operation will be executed at most
|E| times. For every node v we do deg(v) operations. Hence we get:

Θ(
|V|

∑
i=1

(1 + deg(vi)) + |E|) = Θ(|V|+
|V|

∑
i=1

deg(vi) + |E|)

= Θ(|V|+ 2|E|+ |E|)
= Θ(|V|+ |E|)

4.2.2 BFS

In BFS, instead of going deep in the graph, we go in breadth. This means
that we start from node v and we visit all nodes reachable from v. We save
all those nodes in a queue and then we pick an arbitrary one from this queue
and we visit all nodes reachable from there (and we add them at the end of
the queue). Then we pick the second node reachable from v, we visit all its
neighbours and we add them at the end of the queue. When all neighbours
from v are de-queued we go one layer deeper and we continue in the same
way.

We discuss the same aspects of DFS also for BFS.

1Recall that the first step is pushing the starting node in the stack and this would be the
base case of a more formal induction proof.
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We start from node A and we use the convention of alphabetical order to
break ties. We visit all the neighbours of A (hence B, C and D) and we save
them in a queue. Then we pick the first element of the queue which, by the
alphabetical order convention, is B. We visit all neighbours of B (in this case
only E since C was already visited) and we add E to the queue. Then we
dequeue C and we do nothing (C has no edges going out). Afterwards we
dequeue D and we visit its neighbour F (again, C has already been visited).
We add F to the queue. At this point the queue contains F and E and since,
both elements have no edges to elements which have not been visited, we
dequeue them and we are over. The order is different, but the result is in
principle the same we obtained with DFS (i.e. we see with both algorithms
that G and H are unreachable from A). In general DFS and BFS are equiva-
lent when we want an answer to the question which nodes are reachable from
u?, but in other situations we might want to use a variant of either DFS or
BFS to answer some other algorithmic questions.

As we see from the following pseudocode, the key data structure to imple-
ment BFS is the queue.

Algorithm 22: BFS(G, v)

Q← ∅;
Mark v as active;
Enqueue(v, Q);
while Q 6= ∅ do

w← Dequeue(Q);
Mark w as visited;
for each (w, d)∈ E do if d not yet visited and not active then

Mark d as active;
Enqueue(d, Q);

The informal proof for the correctness is completely analogous to the one
used for DFS.
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The runtime is, again, Θ(|V|+ |E|). We see that each node will be enqueued
at most once and for each node v we do deg(v) elementary operations.
Hence the runtime is:

Θ(
|V|

∑
i=1

(1 + deg(vi))) = Θ(|V|+ E|)

4.3 Topological Sort

Imagine that you have to solve n tasks T1, T2, . . . , Tn. However there are some
constraints regarding the order in which the tasks have to be solved. That
is, there are some constraints like task Ti must be solved before Tj. In a first
instance, it is important to see that is not always possible to find a solution.
Consider for example the following constraints:

• Solve T1 before T2

• Solve T2 before T1

In this case is not possible to find an order which satisfies both constraints.
The problem of determining the existence of an order that satisfy all con-
straints can be modelled with a graph G = (V, E) as follows: we create a
node vi for every task Ti (with 1 ≤ i ≤ n) and for every constraint solve Ti
before Tj we add an edge from node vi to node vj. If the graph contains a
bijective function ord : V → 1, . . . , |V| such that ord(i) < ord(j) for every
(i, j) ∈ E, then we can solve the task. The function ord is called topological
sort of the graph G. Here we present an algorithm to find a topological sort
in a given graph (if a topological sort exists). A first important observation
is the following:

∃ topological sort⇔ ¬∃ directed cycle in the graph

Before we discuss an implementation of the algorithm it is worth discussing
how to run topological sorting on paper with a small graph.

1. Find a node v that has no outgoing edges (i.e. degout(v) = 0).

2. Put v at the end of the topological sorting order.

3. Remove v and all its ingoing edges from the graph.

4. Go on recursively on the rest of the graph.

Of course, by a symmetry argument, you can also do the following:
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1. Find a node v that has no ingoing edges (i.e. degin(v) = 0).

2. Put v at the beginning of the topological sorting order.

3. Remove v and all its outgoing edges from the graph.

4. Go on recursively on the rest of the graph.

Algorithm 23: TopologicalSort(G)

S← ∅ ;
Save In-degree of every node in an array A of length |V| ;
for each v ∈ V do if A[v] = 0 then

Push(v, S);
i← 0;

while S not empty do
v← Pop(S);
ord[v]← i; i← i+1;
for each (v, w) ∈ E do A[w]← A[w]-1;
if A[w]=0 then

Push(w,S);

if i = |V|+ 1 then
return ord;

return cycle;

We observe that the stack contains all nodes v such that, in a given stage of
the algorithm2, have degin(v) = 0. At every iteration of the while loop we
remove an element v from the stack (which has in-degree zero) and we put
v as next element of our topological sorted sequence. Then, for all edges
(v, w), we remove one from the in degree of w: this is equivalent to delete v
from the graph and all edges that starts from v. The algorithm ends when
the stack is empty and this happens if and only if we have considered all
elements which could have been pushed in the stack (i.e. all nodes which,
at a certain point, have in-degree 0). If the number of elements which has
been stored in the stack is equal to |V| then we have calculated a topological
sorting, otherwise not.

The asymptotical complexity of the algorihtm in the pseudocode is Θ(|V|+
|E|). In facts we see that:

• Step 2 takes Θ(max(|V|, |E|)).

• Steps 3-4 take Θ(|V|).
2Recall that, although we don’t delete anything explicitly, we delete some nodes and

edges when we decide the position in the topological sorting of an element.
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• The while loop can be executed at most |V| times.

• In the worst case (i.e. when we have a topological sort of the graph)
the for loop inside the while loop is executed |E| times in total.

With this observation we can conclude that the runtime of our algorithm to
find a topological sort in a graph is Θ(|V|+ |E|).

4.4 Shortest Path

In this section we consider a weighted graph G = (V, E), i.e. every edge
e ∈ E has a cost c(e). The problem of interest answers to queries where we
give as input a starting vertex s, an ending vertex t, and we want to find
the shortest path W = (s, v1, . . . , vk, t) in G, where all nodes in the path are
elements of V and all transitions are elements of E. In particular, among all
possible paths between s and t, we want to find the one that minimizes the
sum of the costs associated to the edges in the path. We note with d(s, t)
the cost of the shortest path from s to t. In this section, we assume that G
has no negative cycles, because in this case a shortest path would not exists
(in facts, every tour along this cycle would give a shorter distance and hence
the distance would tend to minus infinity). We also assume that the distance
from a vertex to itself is zero.

At this point we mention a useful property of the shortest path problem that
one can easily show by contradiction. Shortest paths satisfy the following
optimality principle: if (v0, v1, . . . , vl−1, vl) is a shortest path in G, then also
(v0, v1, . . . , vl−1) is a shortest path in G. We know that if a problem exhibits
an optimality principle, then it can be solved with dynamic programming.
In facts one can write the following recurrence:

d(s, v) = min
(u,v)∈E

d(s, u) + c(u, v)

The problem of this approach is that the order to fill the table is not always
clear. However in some cases, as we will see, this is possible and we will
take advantage of this. The shortest path problem has a peculiarity: there
are multiple algorithms with different runtimes. Some algorithms are faster
but less general, other are a bit slower but they work on more instances of
the input graph. For this reason it is important to define the context where
we want to solve a shortest path problem and pick the best algorithm accord-
ingly. The following table gives an overview of the different possibilities that
we have at hand.
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Situation Algorithm Runtime
One-to-all, all edges
with the same weight

Modified BFS O(|V|+ |E|)

One-to-all, directed
acyclic graph with
arbitrary weights

DP and TopoSort O(|V|+ |E|)

One-to-all, only with
non-negative weights

Dijkstra O(|V| log |V|+ |E|)

One-to-all, also with
negative weights

Bellman-Ford O(|V||E|)

All-to-all Floyd-Warshall O(|V|3)
All-to-all Johnson O(|V||E| +

|V|2 log |V|)

4.4.1 Modified BFS

If all edges have the same weight, we observe that the shortest path tree and
the BFS tree are the same. In facts, both trees always visit adjacent vertices
and if the weights are uniform the notions of adjacent and nearest are the
same. Hence we can come up with the following algorithm with runtime
O(|V|+ |E|).

Algorithm 24: SP-BFS(G, s)

d [s]← 0;
d [v]← ∞ for v ∈ V \ {s};
Q← ∅;
Enqueue(s,Q);
while Q 6= ∅ do

u←Dequeue(Q);
for each (u, v) ∈ E do
if d [v] = ∞ then

d [v]← d [u] + c(u, v);
Enqueue(v,Q);

4.4.2 DP and TopoSort

Now we move to an algorithm that works for directed acyclic graphs. The
idea is to using the recurrence:

53



4.4. Shortest Path

d(s, v) = min
(u,v)∈E

d(s, u) + c(u, v)

and filling the table in topological order. Concretely:

Algorithm 25: SP-DAG(G, s)

d [s]← 0;
d [v]← ∞ for v ∈ V \ {s};
for v ∈ V in topological order do

for all (v, w) ∈ E if d [w] > d [v] + c(v, w) then
d [w] = d [v] + c(v, w);

We have already seen an algorithm that computes the topological sort in
O(|V| + |E|). Afterwards, the for loop accesses all edges from a starting
point v (and to do this for all vertices v ∈ V). If the graph is given with an
adjacency matrix, we have a runtime of O(|V|2), if we have an adjacency list,
we get O(|V|+ |E|).

4.4.3 Dijkstra

The modified BFS does not work if we have non uniform weights because it
could happen that in the BFS we have a direct edge from a node u to a node v
which is not the shortest. In facts, it is possible that going from u to another
node u′ and then to v is shorter than taking the direct way. The algorithm of
Dijkstra is a generalized search that takes this issue into account. Concretely,
we use an array d of length |V| such that for all nodes v ∈ V it always holds
that d [v] is greater equal than the minimum distance from the starting node
s to v. Moreover, the algorithm saves a set S of the nodes for that we know
that the correspondent entrance in d is equal to the shortest path from s to it.
At the beginning of the algorithm we set d [s] = 0, S = {s} and d [v] = ∞ for
all nodes different from s. At the end of the algorithm we want to get S = V,
because this would mean that d contains the right answer for every node.
Dijkstra’s algorithm does some computation at every iteration in order to
include an additional node to S. Concretely we know that for all v ∈ V \ S
an upper bound of the final answer is given by:

d [v] = min
(u,v)∈E

u∈S

d [u] + c(u, v)
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Moreover let v∗ ∈ V \ S be the node such that d [v∗] is minimal. We have
that d [v∗] is the shortest distance from s to v∗. This can be seen because
every path W from s to v∗ must leave S. For this reason we get:

c(W) ≥ min
(u,v)∈E

u∈S
v∈S\V

d [u] + c(u, v) = d [v∗]

This means that every path from s to v∗ has cost greater equal than d [v∗]
and hence this value is optimal.

By considering all these observation, we need to compute the following at
every iteration:

d [v] = min
(u,v)∈E

u∈S
v∈V\S

d [u] + c(u, v)

and we include the minimal value of d [v∗] such that v∗ ∈ V \ S into S. After
|V| iteration we have solved the task.

Algorithm 26: Dijkstra(G, s)

for each v ∈ V \ {s} do d [v] = ∞;
d [s] = 0;
V \ S← V;
while V \ S 6= ∅ do

choose u ∈ V \ S with minimal d [u];
V \ S− {u};
for (u, v) ∈ E do

if d [v] > d [u] + c(u, v) then
d [v] = d [u] + c(u, v);

Now we analyse the runtime. We see that it depends on what data structure
we use to extract the minimum element in the set V \ S. In general, we
need a data structure to manage V \ S. In general, this data structure must
support three operations: an Add (at the beginning we add all nodes to the
data structure), an Extract-Min (at every iteration of the while loop we
extract the node with minimum distance from s) and a Decrease-Key (for
the relaxation). Provided that we use an adjacency list he total runtime is
given by:
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O(|V| ·Add + |V| · Extract-Min + |E| ·Decrease-Key)

Where we did an amortised analysis for the second nested loop (in facts, in
total we take a look at every edge exactly once). Depending on the data
structure we choose we get:

• Heaps: O((|V|+ |E|) log |V|)

• Fibonacci Heaps: O(|V| log |V|+ |E|)

4.4.4 Bellman-Ford

We know that negative edges might be a problem because we could have
negative cycles. Before we design an algorithm that also addresses this type
of issue, we first present the algorithm of Ford. The idea is the following: if
we take an (u, v) ∈ E with d [v] > d [u] + c(u, v) then we relax the edges, i.e.
we do d [v]← d [u] + c(u, v). The algorithm of Ford simply take a look at all
edges and does a relaxation. If, after an iteration through all edges, no edge
has been relaxed, then the algorithm terminates. This algorithm is correct
when it terminates, but one can show that this algorithm terminates if and
only if the graph has no negative cycles. In order to address this issue we
use the fact that a graph contains a negative cycle if and only if after |V| − 1
there is still an edge that can be relaxed. We get the following algorithm:

Algorithm 27: Bellman-Ford(G, s)

for each v ∈ V \ {s} do d [v] = ∞;
d [s] = 0;
for i← 1, 2, . . . , |V| − 1 do

for each (u, v) ∈ E do
if d [v] > d [u] + c(u, v) then

d [v]← d [u] + c(u, v)

for each (u, v) ∈ E do
if d [v] > d [u] + c(u, v) then

return Negative cycle;

It is easy to see that the runtime of the algorithm is given by the nested loops:
one iterates through every vertex and one through every edge. Hence the
runtime of the Belman-Ford algorithm is O(|V||E|).

The algorithms we have seen so far are one-to-all algorithms, i.e. given a
starting node s they calculate the shortest path from s to all other nodes in
the graph. But what if we want to calculate the shortest path between all
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possible pair of nodes in the graph? A naive solution would be to repeat
the one-to-all algorithms for all possible starting nodes. This is correct but
it might not be efficient. The next two algorithms are a solution to this
problem.

4.4.5 Floyd-Warshall

This algorithm uses the idea of dynamic programming. First, it gives a
unique ID from 1 to |V| to every node. Then it uses a three dimensional
table where the entry d(u, v, i) indicates the length of the shortest path from
u to v which uses as intermediate node only the nodes with ID from 1 to
i. Of course, at the end, the length of the shortest path from u to v will
be in d(u, v, |V|). At the beginning, we assign for all nodes d(u, u, 0) = 0
and, for all edges (u, v) ∈ E, d(u, v, 0) = c(u, v). In order to update the
value of an entry d(u, v, i), we keep the minimum between d(u, v, i− 1) and
d(u, i, i − 1) + d(i, v, i − 1). We fill the table for ascending i (and then we
consider of pairs of nodes). This gives us the following algorithm:

Algorithm 28: Floyd Warshall(G)

for 1 ≤ u ≤ |V| and 1 ≤ v ≤ |V| do
d(u, v, 0) = ∞;

for u ∈ V do
d(u, u, 0) = 0 ;

for (u, v) ∈ E do
d(u, v, 0) = c(u, v);

for i = 1, . . . , |V| do
for u = 1, . . . , |V| do

for v = 1, . . . , |V| do
d(u, v, i) = min(d(u, v, i− 1), d(u, i, i− 1) + d(i, v, i− 1);

return d;

At it’s easy to observe, the runtime of this algorithm is O(|V|3).

4.4.6 Johnson

In principle, if we have a graph with only positive edges, we could run |V|
times Dijkstra’s algorithm and get a better runtime than Floyd-Warshall’s
algorithm (provided that we don’t have too many edges, in the limit case
the runtimes are equivalent). However, we have a problem when we have
negative edges. Johnson algorithm uses a trick to transform a given graph
G into a graph G′ with only positive weights and the same shortest paths
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between nodes such that the problem of the all-to-all shortest path can be
solved (potentially) faster by applying |V| times Dijkstra. The idea is to add
a new node v0 into the graph and then we add an edge with weight zero
from v0 to all other nodes. Then we define the new weights as: c(u, v) +
h(v)− h(u) where h(v) and h(u) are the length of the shortest path from v0
to v and u respectively. We note that the shortest paths in the graph with
the new weights are the same because the length of the shortest path from u
to v in G′ is equal to the one in G if we neglect a constant h(v)− h(u) which
is the same for all shortest paths from u to v. Moreover the new costs are
non negative. Hence Johnson’s algorithm provides the following steps:

1. Introduce v0 in the graph and an edge with weight zero to all other
nodes.

2. Use Bellman-Ford to calculate h(v) for all v ∈ V.

3. Calculate the new weights using the function h.

4. Run |V| times Dijkstra.

5. Use h to modify the distances found with Dijkstra.

If we use Fibonacci Heaps to implement Dijkstra we come up with a runtime
of O(|E||V|+ |V|2 log |V|) which can be better or equal than the one found
with Floyd-Warshall.

4.5 MST

In this section we study another interesting graph problem algorithm, deter-
mining the minimum spanning tree (MST) in a graph. The formal specifica-
tion of the problem is the following: given a connected graph G = (V, E)
and a cost function c : E → R, we want to find a tree T = (V, E′) with
E′ ⊂ E such that ∑e∈E′ c(e) is minimized.

Before we give some concrete algorithms we give two useful rules:

• Blue rule: given a set S ⊂ V with ∅ 6= S 6= V such that no edge
in E(S, V \ S) is blue, color an edge e′ ∈ E(S, V \ S) with c(e′) =
min{c(e)|e ∈ E(S, V \ S)} in blue.

• Red rule: given a circle C in G such that no edge in C is red, color in
red an edge e′ ∈ C with c(e′) = max{c(e)|e ∈ C}.

One can show that if in a graph neither the blue nor the red rule is applicable,
then all edges are colored and the blue edges are a minimum spanning tree.

With this idea in mind we present three different algorithms.
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4.5.1 Boruvka’s Algorithm

This algorithm begins with |V| connected components Si (1 ≤ i ≤ |V|) and
contracts them together until a single connected component remains. While
doing this contractions, we need to save in the set T the edges which are in
the MST. Concretely:

Algorithm 29: Boruvka(G)

T ← ∅;
while T is not a spanning tree do

(S1, . . . , Sk)← connected components of T;
(e1, . . . , ek)←minimum edges that leave S1, . . . , Sk;
T ← T ∪ (e1, . . . , ek);

Every iteration of the while loop takes O(|V|+ |E|). In facts, we just need
to iterate once through the adjacency list. Moreover, at every iteration, every
connected component is contracted with another one. Since we start with
|V| connected components and we end with only one, we do O(log |V|)
iterations. Hence the total runtime of this algorithm is O((|V|+ |E|) log |V|).

4.5.2 Prim’s Algorithm

Now we see an algorithm that applies the blue rule until convergence. It
starts from an arbitrary node v and sets S = {v}. Then, it take a look from
all edges that start in S and end in V \ S and add the edge with minimum
cost to the MST. Moreover it add the end of this edge into the set S. The
algorithm goes on until S contains every node in the graph. In order to
implement this we use the following algorithm:

Algorithm 30: Prim(G)

S← ∅;
Q with all nodes with priority ∞;
Decrease-Key(Q,s,0);
while S 6= V do

u← Extract-Min(Q);
S ∪ {u};
for (u, v) ∈ E, v /∈ S do

Decrease-key(Q,v,c(u,v);

The runtime of this algorithm is:
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O (|V| · Insert + |V| · Extract-Min + |E| ·Decrease-key)

We observe that we can chose multiple data structures to implement the
operations required by the ADT we used in the algorithm. And this ADTs
can have different costs. A good choice is using min-heaps, in order to get a
runtime of O((|V|+ |E|) log |V|).

4.5.3 Kruskal’s algorithm

The idea of this greedy algorithm is the following: we sort the edges with
respect to their weights. Then we make a union find data structure where
every node is a separated connected component. We iterate through every
edge and, if the edge connects two different connected components, we add
the edge to the MST and we union the connected components of the two
edges.

Algorithm 31: Kruskal(G)
Sort the edges with respect to their weights. Let e1, . . . , e|E| be the

sorted sequence (in ascending order). ;
Create a union-find data structure and create a separated

component for every node.;
T ← ∅ ;
for i=1 to |E| do

Let ei = (u, v);
if no Same(u,v) then

T ← T + ei;
Union(u,v);

If we implement the union routine with the clever trick that we studied in
Chapter 3, an amortized analysis gives us a total runtime of O(|V| log |V|)
for the union find operations. By combining this result with the sorting
phase we get a total runtime of O(|E| log |E|+ |V| log |V|).
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Quiz

1. The idea of the proof for the lower bound of sorting is based on:

(a) Looking at the minimum height of a binary search tree containing
at least a certain number of nodes.

(b) Looking at the minimum height of a binary search tree containing
at least a certain number of leaves.

2. The runtime of Quick Sort is O(n log n)

(a) True

(b) False

3. For which data structure is the path compression technique useful?

(a) AVL trees

(b) Union-Find data structure

(c) Min-max heaps

(d) Multistack

4. We can efficiently find longest paths in graphs in some cases, but in
general the problem is difficult and no polynomial algorithm is known.

(a) True

(b) False

5. What is a practical data structure that can be used to implement Dijk-
stra’s and Prim’s algorithms?

(a) Queue

(b) Priority Queue

(c) Union-Find data structure
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(d) Stack

6. We can modify the binary search algorithms from the lecture such that
it works on linked-lists.

(a) True

(b) False

7. We have seen an algorithm to decide whether a graph is bipartite. We
can easily modify this algorithm to decide whether a graph is tripar-
tite.

(a) True

(b) False

8. Which sorting algorithm is similar to how humans usually sort a deck
of cards?

(a) Bubble Sort

(b) Insertion Sort

(c) Heap Sort

(d) Merge Sort

9. We can adapt Kruskal’s algorithm to compute a maximum spanning
tree.

(a) True

(b) False

10. The main advantage of dynamic programming over raw recursion is:

(a) Avoiding unnecessary computation in the case of overlapping
sub-problems.

(b) Allowing the program to efficiently jump from the leaf of the
recursion tree to its root.

(c) Avoiding the program to efficiently jump from the root of the
recursion tree to a corresponding leaf.

(d) Saving memory in the case of a very deep recursion tree, but only
if you use a bottom-up approach.

11. Quick Sort has quadratic runtime if and only if we always pick the
greatest/ least element from the part of the array that still has to be
sorted.

(a) True
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(b) False

12. For the NP-complete problems it holds that...

(a) We don’t know a lower bound

(b) We don’t know an upper bound

(c) Neither

13. Which of the following are data structures to store graphs?

(a) Adjacency matrix

(b) Adjacency heap

(c) List of edges

14. Bubble Sort is slower than Merge Sort...

(a) Never

(b) In the best-case

(c) In the worst-case

15. A Stack is known as a...

(a) FIFO data structure

(b) LIFO data structure

16. How many edges are contained in a tree with n nodes?

(a) It depends

(b) n-1

(c) n

(d) n(n+1)
2

17. AVL trees are a variant of binary search trees where each non-leaf node
is exactly balanced.

(a) True

(b) False

18. The Theta notation can be used for...

(a) Upper bounds of algorithms

(b) Lower bounds of algorithms

(c) Tight bounds of algorithms

19. Priority queues are usually implemented with...
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(a) Queues

(b) Heaps

(c) AVL trees

(d) Union-Find data structure

20. If we have to find keys in an array it is better to fort sort it such that
we can use binary search instead of linear search.

(a) Always

(b) Never

(c) Sometimes

21. A graph can be topologically sorted if and only if it does not contain
any cycle

(a) True

(b) False

22. Which of the following factors play a role in the performance of a
program?

(a) Asymptotic efficiency of the algorithm

(b) Constants hidden by the asymptotic notation

(c) Cache performance

(d) Memory usage of the program

23. The most efficient implementation of Dijkstra uses a priority queue.

(a) True

(b) False

24. What are the main ingredients of AVL trees?

(a) Rotations

(b) Path compression

(c) Avoiding overlapping sub-problems

(d) A special mathematical property similar to the one of the Fibonacci
sequence

25. A complete graph can not contain an Euler tour.

(a) True

(b) False
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26. The best algorithm for the maximum sub-array sum uses the divide-
and-conquer paradigm.

(a) True

(b) False

27. We can use binary search to speed up insertion sort and obtain an
optimal algorithm for sorting.

(a) True

(b) False

28. There exist a polynomial algorithm to decide whether a graph contains
an Euler tour or not.

(a) True

(b) False

29. What is the purpose of exponential search?

(a) Searching through a collection containing an exponential number
of elements

(b) In the best case, it can speed up binary search

(c) Helping evolutionary algorithms in properly exploring many re-
gions of the solution space

30. No algorithms to exactly solve the travelling salesman problem is known.

(a) True

(b) False

31. As a rule of thumb, how many operations of your Java program can
your computer perform each second?

• 104

• 107

• 1015

• 10100

32. Which of the following are types of heaps?

(a) Min-heap

(b) Max-heap

(c) Min-max-heap
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33. How many nodes can be contained at most in a binary search tree with
height h (where the root is considered to be at height zero)?

(a) 2h

(b) 2h − 1

(c) 2h−1

(d) 2h+1 − 1

Solutions

1. To prove the lower bound of sorting we consider a binary search tree.
The height of the binary search tree corresponds to the number of
operations that we have to perform and each node is a possible result.
Hence we are interested in the height of a binary search tree with n
elements and the answer is (a).

2. False, in the worse case Quick Sort has runtime O(n2).

3. For Union-Find, it speeds up the Find operation.

4. True, the longest path problem is NP-complete.

5. The answer is (c), priority queue.

6. False, linked list don’t provide a framework for random access.

7. False, determining whether a graph is k−partite for k > 2 is NP-
complete.

8. The answer is (b), Insertion Sort.

9. True, we can just multiply all edges by -1 and run Kruskal in order to
compute a maximum spanning tree.

10. (a) and (d) are correct. Note that using memoization does not necessar-
ily save memory because recursion occupy space in memory (but you
will discuss this issue in great detail in the coming up semesters).

11. False, also if we pick large/ small elements as pivot most of the time.

12. The answer is (c). A lower bound is always known (e.g. the size of the
input), and an upper bound is provided by a known algorithm (e.g. a
brute force one).

13. (a) and (c).

14. In the best case. In facts it has a best case of Ω(n), as opposed to
Ω(n log n) of Merge Sort.
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15. The stack is a LIFO data structures.

16. n - 1

17. False, nodes are almost balanced. This means that the absolute differ-
ence between the number of children on the left and the number of
children on the right differs by at most one.

18. All of them. The Theta notation indicates that the bound is tight, but
it can be used also for upper/lower bound of algorithms. For example,
one could say that a problem has a lower bound of Θ(n), and this
means that in the best case the algorithm will perform c · n operations
for a constant c.

19. Priority queues are usually implemented with heaps.

20. The answer it depends. The threshold of the sorting-search trade-off is
when we have to search Θ(log n) keys: when we have to search more
than that it is worth sorting, otherwise not.

21. True.

22. All of them.

23. False, with Fibonacci heaps (not discussed in the lecture, but you
should know that they exist and which rumtime they provide) provide
a better performance.

24. Rotations and also the answer (d), which is the basis of why AVL trees
have logarithmic height.

25. True, for example consider two nodes with a single edge.

26. False, there exist a faster algorithm that runs in Θ(n) that uses the
sliding window technique.

27. False, also if we find the position to put the element in logarithmic
time, we still have to move all the successive elements in the array.

28. True.

29. Exponential search is used to (hopefully) speed up binary search.

30. False, there is a dynamic programming approach. It has exponential
runtime, but the algorithm exists.

31. 107

32. All of them.

33. 2h+1 − 1
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