
ETH Zurich

Department of Computer Science

Algorithms and Probability PVK Skript

Author:
Soel Micheletti

Preface

This script is a summary of the ETH Course Algorithmen und Wahrscheinlichkeit. Some topics are more
presented more in depth than others, but I hope you’ll get a good overview about all the important concepts
taught in the course. If you find any error or if you have any suggestion, don’t hesitate to contact me at
msoel@ethz.ch: I’m happy to hear your feedbacks!

Contents

Contents ii

1 Graph Theory 1
1.1 Recap from Algorithms and Data Structures . 1

Concepts and Notation . 1
Bipartite Graphs . 2
Sequences . 2
Degree . 3
Graph Data Structures . 3
Trees . 5

1.2 Minimum Spanning Tree . 6
Cuts . 6
Blue and Red rule . 6
Prim’s Algorithm . 7
Kruskal’s Algorithm . 7

1.3 Advanced Graph Concepts . 8
1.4 Matchings . 9

Perfect Matching . 10
Augmenting Path . 10
Blossom’s Algorithm . 11
Hall’s Marriage Theorem . 11
Vertex Cover . 11

1.5 Eulerian Circuits . 12
1.6 Hamiltonian Cycles . 13
1.7 Travelling Salesman Problem . 14

2-Approximation Algorithm for the Metric TSP . 14
1.5-Approximation Algorithm for the Metric TSP . 15

1.8 Graph colouring . 15
1.9 Network Flow . 17

2 Probability Theory 21
2.1 Basic Concepts of Discrete Probability Theory . 21

Inclusion/ Exclusion Principle . 22
Principle of Laplace . 22
Conditional Probability . 23
Independence of Events . 25

2.2 Discrete Random Variables . 26
Independence of Random Variables . 28
Expected Value . 28
Variance . 29
Multiple Random Variables . 30

2.3 Important Discrete Distributions . 31
Bernoulli Distribution . 31
Binomial Distribution . 31
Geometric Distribution . 32
Negative Binomial Distribution . 32
Poisson Distribution . 33

2.4 Coupon Collector Problem . 33
2.5 Important Inequalities . 33
2.6 Solutions . 35

3 Randomized Algorithms 39
3.1 Success Probability Amplification . 40

Las Vegas Algorithms . 40
Monte Carlo Algorithms: One Sided Errors . 40
Monte Carlo Algorithms: Two Sided Errors . 41
Monte Carlo Algorithms: Optimisation Problems . 41

3.2 Target Shooting . 41
3.3 Long Paths . 42

Colorful-Path Problem . 43
Short Long Path . 44

3.4 Min Cut . 45
Some important facts . 45
Basic Version . 46
Bootstrapping . 48

3.5 Hashing . 50
Closed Hashing . 51
Open Hashing . 51
Collision Resolution . 51
Linear Probing . 51
Quadratic Probing . 52
Double Hashing . 52
Cuckoo Hashing . 52

3.6 Smallest Enclosing Circle . 52
Naive Algorithm . 53

3.7 Convex Hull . 53
Jarvis March . 54

3.8 Solutions . 55

Graph Theory 1
In the course Algorithms and Data Structures last semester, you had a first
encounter with graphs: you have seen the definition, some property and
algorithms such as BFS, DFS, Topological Sorting, algorithms for shortest
paths... In this course we go deeper in the topic and we introduce other
exciting concepts. Some of them are exposed in this chapter, others (the
ones that exploit randomization) are presented in Chapter 3.

1.1 Recap from Algorithms and Data Structures

Concepts and Notation

Graphs are a powerful mathematical tool that allows us to model many
different problems. The main idea is to have a collection of elements
(nodes), and the relationship between them (edges). An example could be
to model locations as nodes and the streets between them as edges, or
persons and the relationship between them. Both nodes and edges can be
augmented to contain more information such as color, location, length,
capacity, flow and others to describe them.

Figure 1.1: Simple undirected graph

Definition 1.1.1 (Graph) A graph is a tuple � = (+, �) with
+ = {E1 , ..., E=}, |+ | = = set of nodes
� = {41 , ..., 4<}, |� | = < set of edges

If the underlying relationship is symmetric, meaning that E is connected
to D only if also D is connected to E, then the graph is said to be undirected.

1 Graph Theory 2

� ⊆ {{D, E}|D, E ∈ +} undirected edges
4: = {E8 , E 9}
E8 , E 9 adjacent if {E8 , E 9} ∈ �
E8 , 4: incident if E8 ∈ 4:

If however there is the possiblity of having E in relation to D without D
being in relation to E (e.g. father-of relationship) then the graph is directed.
The direction is represented by an arrow.

� ⊆ + ×+ directed edges
4: = (E8 , E 9)

Bipartite Graphs

If our graph contains two disjoint sets of nodes who aren’t allowed to be
in relationship within themselves (e.g. @4 = {E1 , E2}|E1 , E2 ∈ *∨E1 , E2 ∈
,) then the graph is said to be bipartite.

+ = * ∪, two disjoint sets of nodes (* ∩, = ∅)
� ⊆ {{D, F}|D ∈ *, F ∈,} (undirected bipartite graph)
� ⊆ (* ×,) ∪ (, ×*) (directed bipartite graph)

Figure 1.2: Simple bipartite graph

Sequences

We can select an ordered sequence of vertices, and based on edges
between them and repetition of edges/vertices in our sequence, we can
distinguish them as follows:
let’s consider the sequence 〈E1 , E2 , ..., E:〉

I Weg (walk): a sequence with edges between E8 and E8 + 1 for all
8 ∈ {1..: − 1}. The length is : − 1.

I Pfad (path): a Weg where all vertices are distinct.
I Reise (tour/trail): aWegwhere all edges (but not necessarily vertices)

are distinct.
I Zyklus (cycle): a Weg with E1 = E: (starts and ends at the same

vertex)
I Schleife (loop): a Weg 〈E8 , E8〉 with length 1 (special case of Zyklus).
I Kreis (Circle): a Zyklus with the property ∀8 , 9 ∈ {1, .., : − 1}, 8 ≠
9 · E8 ≠ E 9 (no vertex is visited more than once). Same as a Pfad
with same start and end.

1 Graph Theory 3

I Rundreise (circuit): a Reise with E1 = E:

Here it’s a handy table that summarize these concepts:

all closed
all Weg Zyklus

distinct V Pfad Kreis
distinct E Reise Rundreise

Degree

The degree (or valence) of a vertex E of a graph is the number of
edges incident to the vertex, with loops counted twice. It is denoted
346(E) = |#�(E)|, where #�(E) is the neighborhood of E.
For directed graph, we have the in-degree deg−�(E) = |#−�(E)| and the
out-degree deg+�(E) = |#+�(E)|.

Theorem 1.1.1 ∑
E∈+

346(E) = 2|� |

This formula implies the following:

I the amount of vertices with odd degree is even
I the average degree in a graph is 2<

=

Graph Data Structures

Until now a graph � = (+, �) is an abstract data type which can be
represented as follows:

But how can we represent a graph in a computer? How can you code
algorithms that works with graphs? In order to do this you need a
data structurewhich represent the graph. Here there are the three most
popular solutions.

1 Graph Theory 4

Adjacency matrix We simply do a matrix with |+ | rows and |+ |
columns. The entry (8 , 9) has value 0 if there are no edges between
nodes 8 and 9 and has value F if there is an edge between nodes 8 and 9J
with weight F (in the case of unweighted graphs all edges have weight 1).
In the case of the previous image we would have the following adjacency
matrix:

0 3 0 7 8
3 0 1 4 0
0 1 0 2 0
7 4 2 0 3
8 0 0 3 0

Note that if the graph is undirected the matrix is symmetric, i.e. �) = �.
Now we take a closer look of the asymptotic efficiency of some common
operations on adjacency matrices.

I Memory space: O(|+ |2)
I Add vertex: O(|+ |2)
I Remove vertex: O(|+ |2)
I Add edge: O(1)
I Remove edge: O(1)
I Are D and E adjacent? O(1)
I Given a node E, find 346(E): O(|+ |)
I Given a node E, give an arbitrary neighbour of E: O(|+ |)
I Given a node E, find all incidents edges to E: O(|+ |)

Adjacency list We do a list of lists. The list has a list for every node.
The list of node D contains all E and F such that (D, E, F) ∈ �. In the case
of the previous image we would have the following adjacency list:

{[(0, 1, 3), (0, 3, 7), (0, 4, 8)], [(1, 0, 3), (1, 3, 4), (1, 2, 1)], [(2, 1, 1), (2, 2, 3)],
[(3, 2, 2), (3, 1, 4), (3, 0, 7), (3, 3, 4)], [(4, 0, 8), (4, 3, 3)]}

Let’s take a closer look on the asymptotic efficiency of some common
operations on adjacency lists.

I Memory space: O(|+ | + |� |)
I Add vertex: O(1)
I Remove vertex: O(|� |). You can do it in O(1) if you implement it in

a clever way, think about it and if you don’t find the solution you
can ask me ;)

I Add edge: O(1)
I Remove edge: O(|+ |)
I Are D and E adjacent? O(min(346(D), 34 6(E)))
I Given a node E, find 346(E): O(346(E))
I Given a node E, give an arbitrary neighbour of E: O(1)
I Given a node E, find all incidents edges to E: O(346(E))

Obviously, if you have a complete graph (i.e. every node is connected to
all other nodes), the runtimes of many operations becomes the same of

1 Graph Theory 5

the ones for adjacency matrices. The intuition behind adjacency matrices
is that the efficiency of many operations is inversely proportional to the
number of edges (which, you should remind, is ≤ |+ |2 in the graphs you
consider in this course): if the graph has zero edges the operations are
very efficient, if the graph has many edges the operations have the same
efficiency they would have in adjacency matrices. As you’ll see during
the semester, some algorithms on graphs have different complexity if
we use adjacency matrices or adjacency lists (e.g. Dĳkstra and Prim’s
algorithms).

List of edges We simply do a list of |� | tuples (D, E, F), where D is the
source node, E the destination node and F the weight of the edge. In the
case of the previous image we would have the following list:

[(0, 1, 3), (0, 3, 7), (0, 4, 8), (1, 0, 3), (1, 2, 1), (1, 3, 4), (2, 3, 2),
(2, 1, 1), (3, 2, 2), (3, 1, 4), (3, 0, 7), (3, 4, 3), (4, 3, 3), (4, 0, 8)]

Note that if the graph is undirected we can either put directed edges in
the list (as in the example) or undirected edges (i.e. instead of putting
(0, 1, 3) and (1, 0, 3) we put only one of the two possibilities with the
convention that we consider the graph undirected). Pay attention to the
fact that the list does not have to be sorted in any way! Now we take a
closer look of the asymptotic efficiency of some common operations on
list of edges (in those cases the facts whether we put |� | or 2|� | edges in
the graph is irrelevant).

I Memory space: O(|� |)
I Add vertex: O(1)
I Remove vertex: O(|� |).
I Add edge: O(1)
I Remove edge: O(|� |)
I Are D and E adjacent? O(|� |)
I Given a node E, find 346(E): O(|� |)
I Given a node E, give an arbitrary neighbour of E: O(|� |)
I Given a node E, find all incidents edges to E: O(|� |)

Figure 1.3: Different ways of storing a
graph. Adj. Matrix and Adj. List

Trees

A tree) is a graph on = vertices that satisfies the following properties:

I it is connected
I it has no cycles
I it has = − 1 edges

1 Graph Theory 6

Note that if) satisfies two of these properties, it automatically also
satisfies the third.

Trees also have a few simple properties. We consider the general case of
a tree) with = ≥ 2.

I) contains at least two leaves.
I by removing a leaf from), we obtain a graph �′ which is also a

tree.
I between any two nodes G, H there is exactly one path in).

1.2 Minimum Spanning Tree

Given a graph � = (+, �) and a cost function 2 : �→ ℝ that assigns a
cost 2(4) to each edge in �, a minimum spanning tree (MST)) over � is
a tree with |+ | nodes, such that the sum∑

4∈�())
2(4)

is minimized. This means that among all possible complete trees over �,
) minimizes the total cost. The MST has many applications.

Cuts

A cut consists of a disjoint partition of the vertices+ of � into (⊂ + with
(≠ ∅ and (= +\(. The edges along this cut are all the edges 4 = {D, E}
such that D ∈ (, E ∈ +\(.

Blue and Red rule

All algorithms that compute the MST of a graph either use the blue rule
or the red rule, or a combination of the two. A brief overview of the rules
is given.

Blue rule Given a cut (,+\(with no edges painted blue on this cut,
paint blue the edge 4 with minimum cost 2(4).
Idea: the tree must be connected, therefore pick the cheapest edge that
connects these two partitions.

Red Rule Given a cycle � with no edges painted red, paint red the
edge 4 with maximum cost 2(4).
Idea: the tree contains no cycles, therefore we can safely discard the edge
that costs the most.

1 Graph Theory 7

Figure 1.4: Red and Blue rules visualized

Prim’s Algorithm

This is an algorithm that given as input a graph � and a starting
node 0 returns the "() in time $(|� | log |+ |) or even the better time
$(|� | + |+ | log |+ |) if using advanced data structures such as Fibonacci
heaps. In general the runtime is

O(|+ |(�(Insert) + �(Extract-Min)) + |� |�(Decrease-Key))

The idea is to store a set (of vertices already in the solution, and always
add the cheapest edge along the ((,+\() cut to extend the built part.
Note: this is simply equal to applying the blue rule multiple times,
always picking the cheapest edge. Although the most efficient way to
implement the algorithm is with Fibonacci Heaps, Priority Queues are a
good practical solution.

Algorithm 1.1: Prim’s Algorithm1) ← ∅
2 (← {0}
3 while (≠ +
4 find 4 = (D, E) such that D ∈ (, E ∈ +\(and 2(4)minimized along

cut
5) ←) ∪ {4}
6 (← (∪ {E}

Kruskal’s Algorithm

This is also an algorithm that given a graph � computes the "() in
time $(|� | log |+ |). It works in a greedy fashion by considering edges
in increasing order of weights, each time checking if the insertion in the
tree would create a cycle. If it’s not the case the edge is added. It uses a
Union-Find DS to check this condition. The runtime is given by

O(|+ |(�(Insert) + �(Union)) + |� |�(Find))

Algorithm 1.2: Kruskal’s Algorithm1) ← ∅
2 for all E ∈ +
3 makeset(v)
4 sort � by increasing cost 2(4)

1 Graph Theory 8

5 for 4 = (D, E) ∈ � in order
6 if findset (u) ≠ findset(v)
7) ←) ∪ 4
8 union(u, v)
9 return)

1.3 Advanced Graph Concepts

Definition 1.3.1 A graph is k-connected iff

I |+ | ≥ : + 1
I ∀- ⊆ +, |- | < : · �[+\-] is connected

Definition 1.3.2 A graph k-edges-connected iff

I |� | ≥ : + 1
I ∀- ⊆ �, |- | < : · �[�\-] is connected

Informally this means that we need to remove at least : vertices/edges
to disconnect the graph.

Theorem 1.3.1Menger stated that a graph is k-connected ⇐⇒

∀D, E ∈ +, D ≠ E · ∃: vertex-disjoint D − E paths

This means that since there are k paths that do not share vertices, we cannot
disconnect the graph by removing any : − 1 vertices, which is the definition
of k-connectedness.
Similarly, for a k-edges-connected the same holds but with k edge-disjoint
D − E paths.

Single nodes and edges that disconnect the graph (therefore with : = 1)
are called Articulation points and Bridges respectively. Another name for
articulation points is cut vertex, and for bridges is cut edge.

Figure 1.5: Bridge (1) and articulations (3)
marked darker in the graph

How can we wind articulation points and bridges efficiently in a graph
� = (+, �)?

I perform DFS on �, assigning a number 35 B[E] to each vertex (the
visit order)

I compute ;>F[E] = min dfs number reachable from E via forward-
edges (any number) and at most one backward-edge

I E is an articulation point ⇐⇒
• E = B and s has degree ≥ 2 in), or
• E ≠ B and ∃F ∈ + with {E, F} ∈ �()) and ;>F[F] ≥ 35 B[E].

1 Graph Theory 9

I {D, E} is a bridge if either D or E have degree one or are articulation
points.

) is the tree built by running the DFS algorithm, and B is the node from
which the DFS started. Forward-edges are edges actively traversed by
DFS, oriented in that direction (that make up)), backward-edges are the
others.

Figure 1.6: A graph showing how to find
articulations. Dark edges are forward-
edges, light edges are backward-edges,
and dark vertices are articulations. The no-
tation G/H indicates the dfs and low num-
bers.

Both articulation points and bridges can be found in O(|� |) with the
following algorithm.

Algorithm 1.3: DFS-Visit(G,v)1 num← num+1
2 dfs[E] ←num
3 low[E] ← num
4 isArtPoint[E] ← FALSE
5 for all {E, F} ∈ � do
6 if dfs[F]=0 then
7) ←) + {E, F}
8 val←DFS−Visit(G,w)
9 if val≥dfs[E] then
10 isArtPoint[E]=TRUE
11 low[E] ← min{;>F[E], E0;}
12 else dfs[F] ≠ 0 and {E, F} ∉)
13 low[E] = min{;>F[E], 3 5 B[F]}
14 return low[E]

This code does not check the condition for the root of the DFS-tree. This
can be easily modified at the end: if the root has degree at least two in
the DFS tree, then it is an articulation point.

1.4 Matchings

A set of edges" ⊆ � is calledmatching in a graph � = (+, �) if no vertex
in the graph is incident to more than an edge in". Formally

4 ∩ 5 = ∅ for all 4 , 5 ∈ " with 4 ≠ 5

In this section we are interested in computing amatching" of maximum
size. We introduce two important concepts:

I Amatching" is maximal if any edge in � not already in" added
to" causes" not to be a matching anymore. It’s easy to find, e.g.
with greedy strategy by iterating over all the edges (and picking

1 Graph Theory 10

only those who have both vertices still free) in time $(<). The
greedy strategy finds in $(|� |) a maximal matching with size

|"6A443H | ≥
1
2
|"∗ |

I A matching"∗ that contains the maximum number of edges. This
number |"∗ | = : is called matching number. Informally, this is the
best matching. It holds that

|" | ≤ |"∗ | ∧ |"∗ | ≤ 2|" | =⇒ |" | ≥ :

2
=
|"∗ |

2

An algorithm exists that computes it in $(<
√
=).

Perfect Matching

Amatching"? with |"? | = |+ |2 , meaning that every vertex of the graph is
incident to exactly one edge of thematching. Not every graph possesses it.

If � = (+, �) is a 2:-regular bipartite graph, then we can find a per-
fect matching in $(|� |).

If� = (�]�, �) is a :-regular bipartite graph, then there exist"1 , ..., ":

such that � = "1] ...]": and all"8 with 1 ≤ 8 ≤ : are perfect match-
ings.

Augmenting Path

A path in � = (+, �) is an augmenting path iff its edges are alternatively
not in " and ", starting and ending not in ". This means that an
augmenting path has odd length. The idea of some matching algorithms
is to find such an augmenting path and then remove all the edges in the
augmenting path fromM and add all those not currently in M, effectively
swapping the contained edges and increasing the matching size by 1.
An augmenting path can be found in $(= + <) in a bipartite graph. The
idea is the following: we orient edges not in the matching from A to B,
and edges in the matching from B to A. Moreover, we add two nodes
B and C: B has edges to all nodes in � that are not touched by any edge
in the matching; C has incoming edges from all nodes in � that are not
touched by any edge in the matching. Every path from B to C represents
an augmenting path.

Figure 1.7: Augmenting path once the
edges are swapped

1 Graph Theory 11

Blossom’s Algorithm

An algorithm that finds a maximum matching in a given graph. It does
so by iteratively improving the solution using augmenting path, until no
more augmenting path exists (meaning the matching is maximum).

Hall’s Marriage Theorem

Necessary and sufficient condition to have a matching that covers at least
one side of the bipartite graph. Given a bipartite graph � = (- ∪ ., �).
For a set, ⊆ - , let #�(,) be the neighbourhood of, in � (all vertices
in . adjacent to, .

∃matching that entirely covers X ⇐⇒ ∀, ⊆ - · |, | ≤ |#�(,)|

Informally Every finite subset, has enough adjacent vertices in ..
This makes intuitive sense as if there are not enough possible vertices to
be matched, then it’s simply not possible.

Vertex Cover

Given a graph, the problem of finding a vertex cover consists of finding a
subset � ⊆ + such that every edge is incident to at least one vertex in �.
This informally could be understood as the problem of placing cameras
in vertices such that no street (edge) is left unwatched. We usually are
interested in minimizing the size of � (to save some cash on expensive
cameras), therefore we look for a minimum vertex cover (minVC). The
problem is NP-complete and therefore hard to solve in general.

Definition 1.4.1 Find � ⊆ + with minimal |� | such that

∀4 = {D, E} ∈ � · D ∈ � ∨ E ∈ �

König’s Theorem This theorem states the equivalence between the
minimum vertex cover and the matching problem in bipartite graphs.
Therefore the size of amaximummatching (number of edges) corresponds
to the size of a minimum vertex cover (number of vertices). This allows
us to compute the size of the minVC using more efficient matching
algorithms.

|"∗ | = |minVC|

1 Graph Theory 12

Figure 1.8: Duality between matching
(edges) and vertex cover (vertices)

1.5 Eulerian Circuits

Könisberg was a town in Prussia, divided in four land regions by the
river Pregel. The regions were connected with seven bridges. Leonhard
Euler gave a formal solution to the problem of finding a tour through the
town that crosses each bridge exactly once and so established the graph
theory field in mathematics. An Eulerian circuit in a graph � = (+, �)
is a closed path (cycle) that contains each edge of � exactly once. One
can show the following theorem, which is the crucial observation for our
algorithm.

Theorem 1.5.1 A connected graph � = (+, �) contains an Eulerian circuit
⇐⇒ all nodes in � have even degree.

Hence, in order to check whether a graph contains an Eulerian circuit,
we iterate through each vertex and we check the parity of the degree of
each node. Another similar concept is the one of Eulerian path: instead
of starting from E and coming back to E, we have a path that touches
all edges. A graph has an Eulerian path if and only if there are at most
two edges with odd degree. Intermezzo closed, now we want to design
an algorithm to find an Eulerian circuit in a connected graph where all
nodes have even degree.

We start in an arbitrary vertex E ∈ + and we imagine a runner that starts
in E. The runner runs across an arbitrary walk in the graph and thereby
it deletes all edges that he used, such that those edges will not be used
again. The runner will be over in E (in facts, it is impossible that it gets
stuck in another vertex, otherwise we would have a contradiction to the
fact that all vertices have even degree). We call , the circuit that we
obtained., could either be an Eulerian circuit if it contains all edges of
the graph, or a part of it. In order to check this we use another runner
that runs on, : if it gets back to E without finding any untouched edge
we are over, otherwise this runner finds another circuit, ′ in the graph
(again by deleting used edges) and merges it with, . The second runner
then goes on in, merged with, ′ and, whenever he find unused edges,
he finds a new circuit to merge with the solution. When the second

1 Graph Theory 13

runner gets back to E we are over. More formally we have the following
algorithm

Algorithm 1.4: EulerTour(G,v)1 , ←RandomTour(G, v)
2 secondRunner← v
3 while secondRunner is not equal to v do
4 D ← successor of secondRunner in,
5 if D has some neighbours then
6 , ′←RandomTour(G, u)
7 Merge, and, ′
8 secondRunner← successor of secondRunner in,

1 , ←< E >
2 while E has some neighbours do
3 Choose an arbitrary neighbour D of E
4 Add D to,
5 Delete {E, D} from �

6 E ← D

7 return ,

To implement the algorithm we need to find |� | times an incident edge to
a vertex and delete it from the graph. Both operations can be implemented
in O(1) with double linked adjacency list. By looking at the algorithm
above, we see also that we can merge two cycles in constant time. For this
reasons, the complexity of the algorithm is O(|� |).

1.6 Hamiltonian Cycles

In the previous chapter we studied Eulerian circuits and we have seen an
O(|� |) algorithm to find a circuit which uses each edge exactly once. In
this chapter we study an apparently similar problem: finding a circuit
in a graph that uses each vertex exactly once. Although this might
seem just a variant of the previous problem, this is very different and
(presumably) more difficult. In facts, determining whether a graph
contains an Hamiltonian cycle is an NP-complete problem. This means
that, given a possible solution, we can check in polynomial time whether
it is correct or no. However, it is not known whether a polynomial time
algorithm for such problem exists or not. If one would find a polynomial
time algorithm for this problem, he would show that P=NP and thereby
he would solve the most famous open problem in Computer Science. We
don’t go in further detail about the P vs NP problem, but keep in mind
that for the general problem of deciding whether a graph contains an
Hamiltonian cycle no polynomial time algorithm is know. In the script
there is a dynamic programming approach that solves the problem in
exponential time, but we don’t present it here. However we state some
important results about special cases of this problem:

I A complete grid with < rows and = columns contains an Hamilto-
nian cycle if and only if < · = is even.

I A bipartite graph with partitions � and � can not contain an
Hamiltonian cycle if |�| ≠ |�|.

1 Graph Theory 14

I Hypercubes of dimension 3 contain an Hamiltonian cycle.
I Dirac’s theorem: every graph � = (+, �)with |+ | ≥ 3 andminimal

degree ≥ |+ |/2 contains an Hamiltonian cycle.

1.7 Travelling Salesman Problem

The travelling salesman problem (TSP) is a famous generalization
of the Hamiltonian cycle problem. A businessman wants to visit =
cities exactly once by starting from its own city and coming back. He
knows the time to travel between each pair of cities and he wants
to pick the shortest circuit. Formally: we are given a complete graph
 = and a function ; :

([=]
2
)
→ ℕ0 that assign a weight to each edge.

We want to find an Hamiltonian cycle � in = with BD<4∈� ;(4) =
min{∑4∈�′ |�′ is an Hamiltonial cycle in =}.

The problem is not easier as determining whether a graph contains an
Hamiltonian cycle. In facts, if we had an algorithm to find the optimal
tour, we could decide whether a graph � contains an Hamiltonian cycle
in the following way: we build a complete graph with the same number
of vertices as � and we give weight zero to the edges of � and one
to the others. If the optimal tour has weight zero, then � contains an
Hamiltonian cycle. In general, in the context of optimisation problems
such as TSP, one could be happy of finding a solution that is not worse as
 times the value of the optimal solution. In this case this is not possible:
in facts, if we had such an algorithm, we could determine whether a
graph contains an Hamiltonian cycle as before (because time zero, i.e.
the value of the optimal solution if the graph contains an Hamiltonian
cycle, is still zero). Hence, having an approximation algorithm for TSP
would be equal to solving the NP-complete problem of the Hamiltonial
cycle.

For this reason,we introduce a relaxed version of the TSP thatmakes sense
in several real world scenarios: themetric TSP. Given a complete graph =
and a function ; :

([=]
2
)
→ ℕ0 such that ;({G, I}) ≤ ;({G, H})+ ;({H, I}) for

all G, H, I ∈ [=]. Similarly as beforewewant tofindanHamiltonian cycle�
in = with BD<4∈� ;(4) = min{∑4∈�′ |�′ is an Hamiltonial cycle in =}.
The condition ;({G, I}) ≤ ;({G, H})+ ;({H, I}) is called triangle inequality
and means: going from G to I directly is shorter or equal than doing a
stop in H.

2-Approximation Algorithm for the Metric TSP

In this section we explain an algorithm that finds a solution to the metric
TSP that is at most twice as costly as the optimal solution. The runtime
of the algorithm is O(=2). The algorithms works as follows:

1. We compute an MST in the graph in O(=2).
2. We follow the tree. When we have to reuse the same edge to visit

another one, we go directly to the target vertex. Since the weights
satisfy the triangle inequality, this will not make the run longer
as twice the cost of the MST. Since leaving away an edge from an
Hamiltonian cycle returns a tree, we have that the cost of the MST

1 Graph Theory 15

is at most as large as the cost of the optimal tour. Hence we have
an algorithm that returns a circuit with cost less equal than the
double of the optimal one.

1.5-Approximation Algorithm for the Metric TSP

The runtime of this approximation is O(=3). We assume, as a black-box
subroutine, that it is possible to find a perfect matching of minimal cost
in a complete graph with = nodes and = even. The idea is similar to
the one of the previous subsection: we compute a MST, we modify the
graph in order to get an Euler tour and then we do the shortcuts. The
only difference is than, instead of doubling each edge of the MST, we do
something more clever: after we computed the MST, we denote with (
the set of nodes that have odd degree in the MST. According to the sum
of degree formula, the cardinality of (is even. We consider the complete
subgraph with nodes from (. Since |(| is even, the complete subgraph
contains perfect matchings. We use our black-box algorithm to comptue
the perfect matching with minimum cost in the complete subgraph with
nodes from (in O(=3). Now we consider the union of the MST T and the
perfect matching with minimal cost M: this graph contains an Euler tour
because now each node has even degree. Similar as before, we go on this
Euler tour and we do the shortcuts. We have to show that this is a 1.5
approximation. Using the same notation as in the script and the triangle
inequality, we get:

ℓ (�) ≤ ℓ ()) + ℓ (")

and in order to prove the statement we have to show that ℓ (") ≤ 1
2$%).

In order to do that consider the optimal tour on (: this is has at most the
same length of the optimal tour in �. On this tour there are two perfect
matchinngs and at least one of them costs at most 1

2$%). The perfect
matching with minimal cost in the complete subgraph of (has at most
this cost, and this proves that this is a 1.5 approximation.

1.8 Graph colouring

One can solve many problems by finding in an appropriate graph a
partition of the vertices, such that edges connect only vertices in different
partitions. As an example consider exam scheduling.We consider a graph
� = (+, �) where + is the set of exams and we have an edge {D, E} if
and only if exam D and exam E have a student in common. Hence we can
say that edges represent conflicts. The goal is to find the minimal number
of partitions of such graph such that there are no edges within the same
partition (an edge within the same partition would mean that two exams
with at least a student in common would take place at the same time).
Such a value represents the minimum number of time slots needed for
such an exam session.

In general we define a (vertex) colouring of a graph � = (+, �) with
: colors as a mapping 2 : + → [:] such that 2(D) ≠ 2(E) for all edges

1 Graph Theory 16

{D, E} ∈ �. Moreover we define the chromatic number "(�) as the
minimum number of colors needed to color �.

An important example is the case where "(�) = 2. Such graphs are called
bipartite. In general we have:

Theorem 1.8.1 A graph � = (+, �) is bipartite⇔ it does not have any cycle
of odd length as subgraph.

Proof. ⇒ Consider a simple triangle as an example for an indirect proof.

⇐We start a BFS from an arbitrary vertex B and we color a vertex with
color 1 (2) if and only if its distance from B is even (odd). Since there is no
cycle of odd length there could be no edge such that its vertices have the
same color.

A classical graph colouring problem is the colouring of maps, where
neighbouring lands should be assigned to different colors. This problem
comes with the assumption that the territory of each land is connected
and that lands that touch in a single point can be coloured with the same
color. An important theoretical result in graph colouring is that every
such map can be coloured with (at least) four colors.

How can we determine the colouring of a graph with the least number
of colors? In order to decide, whether a graph is bipartite or not, a BFS
is sufficient, but how can we extend to a larger chromatic number? In
general, graph colouring is a difficult problem. Already the question
does it holds for a given graph � = (+, �), that "(�) ≤ 3? is NP complete.
This means that (with the assumption P≠ NP) there is no polynomial
algorithm that computes the chromatic number of a graph. In practice
this means that we have to find approximations of the optimal solution.

The following algorithm computes a colouring of the vertices of the graph
by visiting the vertices in an arbitrary order E1 , . . . , E= and assigning
to each vertex the lowest id of a colour, which is not used among its
neighbours.

Algorithm 1.6: Greedy-Colouring(G)1 Choose an arbitrary order of the nodes E1 , . . . , E=
2 2(E1) ← 1
3 for i = 2 to n do
4 2(E8) ← min{: ∈ ℕ |: ≠ 2(D) for all u ∈ #(E8) ∩ {E1 , . . . , E8−1}}

We begin with the observation that we can implement the algorithm by
initialising at each step an array of length 346(E8) + 1 and iterating on
each neighbour of E8 . Whenever we find a neighbour which is already
coloured we put the relative entry in the array to true. At the end we
iterate in such an array and we assign to E8 the color corresponding to
the lowest false entry in the array. This means that the algorithm has
complexity O(∑E∈+ 346(+)) = O(|� |).

It is clear that the algorithm returns a correct colouring, because given
this construction the colour of a vertex is always different from the one of
its neighbours. Now the question is, howmany colors does the algorithm
uses in the worst case? Since the algorithm chooses the smallest color that
is not yet used in one of the neighbours, we have the worst case scenario

1 Graph Theory 17

when the neighbours of a vertex E8 are already coloured with colors
1, . . . , 34 6(E1). In this case E8 gets the color 346(E8) + 1. This means that
the algorithmuses atmostΔ(�)+1 colors,whereΔ(�) := maxE∈+ 346(+)
is the maximal degree of a node in �. It also holds that the algorithm
returns a colouring with at least "(�) colours (this follows from the fact
that the colouring we return is correct). The number of colors used by the
algorithm depends on which sequence of vertices we consider. It always
exists a sequence that yields to the correct solution but, since we don’t
know this sequence, we can get a worse result. In general, choosing the
correct sequence is not an easy task and there are various heuristics. In
the remainder of this section we summarize some results.

Theorem 1.8.2 (Brook’s Theorem) There is an algorithm with complexity
O(|� |) that computes a sequence for which we will use at most Δ(�) colours,
if such a colouring exists.

Theorem 1.8.3 Let � = (+, �) be a graph and : a natural number such that
the induced sub-graph of � contains a node with degree at most :. It holds
"(�) ≤ : + 1 and there is an algorithm that computes a coloring with : + 1
colors in O(|� |)

Theorem 1.8.4 (Mycielski Construction) For all : ≥ 2 there is a triangle-
free graph �: with "(�:) ≥ :.

Theorem 1.8.5 A graph � = (+, �) with "(�) = 3 can be colored in O(|� |)
with O(

√
|+ |) colors.

1.9 Network Flow

Network Definition A network is a tuple (+, �, 2, B, C)with

I � = (+, �) a directed graph
I 2 : �→ ℝ+0 the capacity function
I B ≠ C ∈ + the source and target nodes

This is simply a directed graph with two nodes marked as source and
target, and a non-negative value assigned to each edge stating the capacity
for transport of that edge.

Figure 1.9: Simple network graph with
capacities marked

1 Graph Theory 18

Flow Definition A flow is a function 5 : � → ℝ+0 with the following
conditions:

I 0 ≤ 5 (4) ≤ 2(4) ∀4 ∈ �
I

∑
D∈+ :(D,E)∈� 5 (D, E) =

∑
D∈+ :(E,D)∈� 5 (E, D) ∀E ∈ +\{B, C}

The first condition means that on every edge a non-negative amount of
flow not exceeding the capacity might pass. The second condition implies
that no flow disappears or appears at any given node (except source and
target), i.e. it is conserved in the network.

Inflow and Outflow We can define the following quantities:

I inflow(E) :=
∑
D∈+ :(D,E)∈� 5 (D, E)

I outflow(E) :=
∑
D∈+ :(E,D)∈� 5 (E, D)

With these quantities we can say

∀E ∈ +\{B, C} · inflow(E) = outflow(E)

which is the same as the previous flow conservation condition.

Flow Value The value of a flow is given by

E0;(5) := netoutflow(B) := outflow(B)−inflow(s) = inflow(C)−outflow(t) =: netinflow(t)

This shows that due to the conservation of flow property, the flow
generated by the source is the same as the flow reaching the target.

Duality with theMin Cut Problem The algorithmic problemwe study
in this section, is to efficiently compute a maximum flow in the graph,
i. e. a flow with maximum value. We observe that the existence of a
maximum flow is not obvious: there could be a situation similar to
finding a maximum in the interval (0, 1), where a maximum does not
exist. In the general case, a network has infinitely many flows and,
although if we knew that there exist a maximum flow, it would not be
easy to show that this is indeed the maximum flow in the graph. In order
to get insights about this issues we introduce a dual problem.

An (−) cut in a network is a partition of + into (,) ⊂ + such that
(∩) = ∅, (∪) = + with B ∈ (, C ∈). The capacity of this cut is how
much flow can pass maximally from (to) and is defined as

20?((,)) =
∑

(D,E)∈((×))∩�
2(D, E)

Since an (−) cut defines how much capacity can go maximally through
the network at some point, we have

E0;(5) ≤ 20?((,)) ∀ 5 , (,)

1 Graph Theory 19

Furthermore, the Maxflow-Mincut Theorem states that there exists a flow
5<0G that makes the above inequality hold exactly, i.e.

5<0G = max
5
E0;(5) = min

((,))-cut
20?((,))

This gives an answer to our questions: yes, there is a maximum flow in
the graph and its value is equal to the minimum (−) cut in the graph.
We will look to efficient algorithms to compute min cuts in Chapter 3, but
since cuts in a graph are finite, we have an algorithm to determine it (i. e.
enumerating them and keeping the minimum). Summarising: if we find
for a flow 5 and (−) cut with 20?((,)) = E0;(5), we have a certificate
that 5 is the maximum flow. Moreover, the existence of a minimum (−)
cut implies the existence of a maximum flow.

Augmenting Paths The idea of the algorithm that we present here is
to improve a given flow. In order to do that we search an augmenting
path in the graph, i. e. a path from B to C in the graph, such that the
flow on each edge of the path is strictly less than the capacity of the
edge. Then, we can increase the flow on each edge on the path with the
quantity � := min4∈ path 2(4) − 5 (4)without breaking any flow property.
Unfortunately, there are sub-optimal flows that can not be improved in
this way. A key observation here is that the increase of the flow on an
edge can not only be compensated with an increase of the flow of an
outgoing edge, but also with the decrease of the flow of another incoming
edge.

Residual Network Given a network � = (+, �) with a flow, we define
the residual network as follows: for each edge 4 ∈ � with 5 (4) < 2(4)
in �, we have an edge with weight 2(4) − 5 (4) in the residual network.
Moreover, for each edge 4 ∈ � with 5 (4) > 0 in �, we have an edge with
opposite direction with weight 5 (4) in the residual graph. Shortly: for
each directed edge in � we have two edges in the residual graph. One in
the same direction as the original edge that represents the margin with
respect to the flow considering the capacity of the edge and another one
in the opposite direction with the same value of the flow on that edge.
Residual networks are useful because we can show that if there is no
path from B to C in them, then we have a maximum flow.

Ford-Fulkerson Algorithm This algorithm finds a maximal flow in a
graph by iteratively finding an augmenting flow in the residual network.
The algorithm is guaranteed to terminate if the capacities are integers
(but not if they are rational). It works as follows:

Algorithm 1.7: Ford-Fulkerson1 5 ← 0
2 while ∃ s−t−Path % in the residual network
3 increase flow 5 along %
4 return 5

Since in every iteration the flow is augmented by at least 1 unit, and
the algorithm stops when we have a max flow with value 5 (as then no
augmenting path exists), we know the algorithm will run a maximum of

1 Graph Theory 20

5 times. Each time wemust construct the residual network, and this takes
$(|� |). Therefore the algorithm takes in total $(5 |� |). We can estimate
5 ≤ =* , where* = max4∈� 20?(4), meaning that no flow can be higher
than the maximum capacity times the amount of vertices (due to any
cut). This however is a very imprecise estimate in general, but gives an
upper-bound.

Useful Tricks Flow problems have many different application in the
real world, most of which have to do with scheduling the use of a finite
amount of resources or find some optimal utilization and transport of
quantity in a network. The following tricks allow to adapt problems that
appear to not fit into this model:

I Multiple sources/targets: add a master source/target and connect
it to each source/target with∞ capacity

I Undirected graphs: duplicate the edges, make them directed with
the same original capacity

I Vertex capacities: split the vertex E into two vertices E8= and E>DC
with only incoming/outgoing edges, and limit the capacity with
an additional edge between them.

The following figure should help remember these tricks.

Figure 1.10: The tricks shown graphically

Another interesting observation is that we can compute maximum
matchings in bipartite graphs with a network flow approach: we add a
source B with edges of infinite capacity to each node of the first partition
and from each node of the other partition we add edges with infinite
capacity to the target. Edges of the bipartite graph have capacity one. By
following the maximum flow in this graph we find a perfect matching in
the underlying bipartite graph.

Probability Theory 2
In this course you had your first contact with probability theory, at least
with respect to your ETH studies in Computer Science. Probability theory
is a wonderful theory that has both mathematical foundations (which
you will study in more detail in the course Wahrscheinlichkeit and Statistik
in the fourth semester) and practical applications (which you have seen
in this course and you will see in other courses at CADMO or in the
area of Machine Learning). In the context of this course, the chapter
about probability theory can be divided into two fundamental parts: a
mathematical approach to the essential concepts of (discrete) probability
and an algorithmic approach to some problems that can be solved by
exploiting the idea of randomization.

In this chapter we first introduce notions of probability theory which will
be useful in the next chapter, where we will exploit them in the context
of randomized algorithms.

2.1 Basic Concepts of Discrete Probability
Theory

Definition 2.1.1 When doing a random experiment, there is a set of possible
outcomes. These outcomes form the sample space. A discrete sample space
Ω = {F1 , . . . , F=} is composed of elementary events F8 ∈ Ω, all of which
have a probability %A [F8]. The probability is a function that measures how
"likely" is an event and has two fundamental properties:

I 0 ≤ %A [F8] ≤ 1
I

∑=
8=1 %A [F8] = 1

A set � ⊆ Ω is called event. The probability %A [�] is defined as the sum
of the elementary events included in �. We also define the complementary
event �̄ := Ω\�.

In general, the probability is a function from the set of of events (often
denoted 2Ω) to the interval [0, 1]. The probability function satisfies the
following properties (some of those are axioms, other can be easily
checked via Venn’s diagram representation, we don’t want to be too
formal here):

I %A [Ω] = 1
I %A [∅] = 0
I %A [∪8�8] =

∑
8 %A [�8] ⇐⇒ �8 ∩ � 9 = ∅∀8 ≠ 9

I %A
[
�̄
]
= 1 − %A [�]

I � ⊆ �⇒ %A [�] ≤ %A [�]
I %A [� ∪ �] = %A [�] + %A [�] − %A [� ∩ �]

2 Probability Theory 22

Inclusion/ Exclusion Principle

In the previous section, we stated different properties of the probability
function. Particularly, we stated

%A [∪8�8] =
∑
8

%A [�8] ⇐⇒ �8 ∩ � 9 = ∅∀8 ≠ 9

Theorem 2.1.1 generalizes this result.

Theorem 2.1.1 If the events �1 , . . . , �= are pairwise disjunct (i. e. if for all
pairs 8 ≠ 9 it holds �8 ∩ � 9 = ∅), then

%A
[
∪=8=1�8

]
=

=∑
8=1

%A [�8]

But what happens if the events are not disjunct? The general case is
covered by the inclusion/exclusion principle, stated in the Theorem 2.1.2.

Theorem 2.1.2 (Inclusion/ exclusion principle) For events �1 , . . . , �=
(= ≥ 2), we have

%A
[
∪=8=1�8

]
=

=∑
;=1
(−1);−1

∑
1≤81<···<8;≤=

%A [�81 ∩ · · · ∩ �8;]

=

=∑
8=1

%A [�8] −
∑

1≤81<82≤=
%A [�81 ∩ �82]

+
∑

1≤81<82<83≤=
%A [�81 ∩ �82 ∩ �13] − · · · + (−1)=+1 · %A [�1 ∩ · · · ∩ �=]

This result is very important and gives the exact result to the problem.
However, for a large value of =, it gets tedious to compute. The Union
Bound comes to rescue by giving an approximation to the value of the
same probability.

Theorem 2.1.3 For events �1 , . . . , �= it holds

%A
[
∪=8=1�8

]
≤

=∑
8=1

%A [�8]

For the sake of simplicity, we avoid giving a formal proof of Theorems
2.1.2 and 2.1.3. The intuition for Theorem 2.1.2 can be given with Venn’s
diagram, for Theorem 2.1.3 just consider that we don’t subtract any
overlap.

Principle of Laplace

In general, the probability of an event is the sum of the individual
probabilities of the elementary events that compose it.

2 Probability Theory 23

%A [�] =
∑
F∈�

%A [F]

A fundamental question is how to determine the probabilities of elemen-
tary events. Laplace proposed to assume that all elementary events have
the same probability. This choice maximizes the entropy (in facts, if we
give to an elementary event a larger probability we assume prior knowl-
edge). Under principle of Laplacewe understand that if we are considering
a discrete sample space Ω of cardinality =, then all elementary events
have probability 1

= . Under this assumption we get

%A [�] = |�|
=

In other words, we describe the probability of an event as the number of
"favorable" events divided by the total number of "possible" events.

Conditional Probability

Until know we considered the case where we don’t have any prior
information regarding the probability space. But what happens if we
already have some information about the outcome of an experiment?

Example 2.1.1 Throw a fair dice. You know that the result is an odd
number. What is the probability, that you got a prime number?

The prior knowledge that the result is odd reduces the probability
space from {1, 2, . . . , 6} to {1, 3, 5}. Since both 3 and 5 are prime, we
get a probability of 2

3 .

We can formalise the argument in the following way. Let � := {1, 3, 5}
be the event that the result is odd and � := {2, 3, 5} the event that the
result is prime. We can read the probability of observing a result from
� when we already know that we observed a result from � as follows:
we know that the "good events" are the one contained in the set � ∩ �
and the "possible events" are the one contained in �. Hence we get

%A
[
� given �

]
=
%A [� ∩ �]
%A [�]

In general, given two events � and � in a sample space Ω, we want to
determine the probability of event � knowing already that � happened.
Wewrite it %A [�|�] andwe say probability of � given �. Similarly as above
we argue that the fact that � happened induces a new sample space. This
explains the following theorem.

Theorem 2.1.4 (Conditional Probability) Let Ω be a sample space and
�, � two events inΩ. We get

%A [�|�] = %A [� ∩ �]
%A [�]

2 Probability Theory 24

We can rearrange the formula for condition probability in the following
way

%A [� ∩ �] = %A [�|�] · %A [�]

This argument can be easily visualized in a probability tree.

�̄

�̄ ∩ �̄

1 − %A [
�|�̄]

�̄ ∩ �
%A

[
�|�̄

]1 − %A [�]

�

� ∩ �̄

1 − %A [�|�]

� ∩ �
%A [�|�

]

%A
[�]

The above tree can be useful to compute other probabilities: %A [�] and
%A [�|�]. We first compute them in the example above and then we
present two theorems than generalize the concept.

I %A [�] = %A [�] · %A [�|�] + %A
[
�̄
]
· %A

[
�|�̄

]
Theorem 2.1.5 (Total Probability) If we divide Ω into a disjunct
partition of �8 for 8 ∈ [<], we have

%A [�] =
<∑
8=1

%A
[
� 9

]
· %A

[
�|� 9

]
I %A [�|�] = %A[�|�]·%A[�]

%A[�]

Theorem 2.1.6 (Bayes’Theorem) If we divide Ω into a disjunct
partition of�8 for 8 ∈ [<]] andwe consider an event�with%A [�] > 0,
we get

%A [�8 |�] =
%A [� ∩ �]
%A [�] =

%A [�|�8] · %A [�8]∑<
9=1 %A

[
�|� 9

]
· %A

[
� 9

]
Exercise 1. You are on a TV show and the questions are extracted u.a.r
from a pool of questions. With probability ? you know the answer and
you answer correctly. Otherwise you guess and you give the right answer
with probability 1/4. What is the probability that you answer correctly
to a u.a.r extracted question?

Exercise 2. You are on another TV show and you have to choose one

2 Probability Theory 25

out of three closed doors. Behind one door there is a wonderful race car,
behind the other two doors some friendly goats. You choose a door. The
TV host opens a door that you have not chosen and behind there are
goats. Then he makes you this offer: you can change your choice. Do you
have a probabilistic advantage in accepting the offer?

Independence of Events

In the previous subsection we studied the formula for conditional proba-
bility. When we consider %A [�|�], the prior knowledge that � happened
can increase, decrease or not influence the probability of �. If the even
� does not influence event �, we have %A [�|�] = %A [�]. This fact also
implies that � does not influence �

%A [�] = %A [�|�] = %A [� ∩ �]
%A [�]

⇐⇒ %A [�] · %A [�] = %A [� ∩ �]

⇐⇒ %A [�] = %A [� ∩ �]
%A [�] = %A [�|�]

The intuitive concept of independence is the following: two events are
independent if they don’t influence each other. In other words, knowing
that an event happened does not give us any additional information
about the probability of another event. This last observation motivates
the following definition.

Definition 2.1.2 (Independence of two Events) Two events � and � are
(stochastic) independent if one of the following three (equivalent) proposition
hold.

I %A [�|�] = %A [�]
I %A [�|�] = %A [�]
I %A [� ∩ �] = %A [�] · %A [�]

How can we generalise the concept of independence of more than two
events?

Definition 2.1.3 (Independence of = Events) The events �1 , . . . , �=
are (stochastic) independent if for all subsets � ⊆ {1, . . . , =} with � =
{81 , . . . , 8:} we have

%A
[
�81 ∩ · · · ∩ �8:

]
=

:∏
9=1

%A
[
�8 9

]
We point out that checking independence for all pair of events does not
work, as shown in the following example.

Example 2.1.2 Consider the Laplace space Ω = {1, 2, 3, 4} and the
following events:

I � := {1, 2}

2 Probability Theory 26

I � := {1, 3}
I � := {1, 4}

We have

%A [�] = %A [�] = %A [�] = 1
2

We also have that

%A [� ∩ �] = %A [� ∩ �] = %A [� ∩ �] = %A [{1}] = 1
4

Hence

I %A [� ∩ �] = %A [�] · %A [�]
I %A [� ∩ �] = %A [�] · %A [�]
I %A [� ∩ �] = %A [�] · %A [�]

Thus, the events �, �, � are pairwise independent. Now consider

%A [� ∩ � ∩ �] = %A [{1}] = 1
4

But %A [�] · %A [�] · %A [�] = 1
8 ≠

1
4 = %A [� ∩ � ∩ �]

Summarising: independence implies pairwise independence, but the
opposite direction does not hold.

Independence is useful because it allows to compute the probability of
the intersection of events simply with multiplications. This simplicity is
often exploited in Machine Larning models that you will learn further
in your studies. But what can we do to compute the intersection of non
independent events? The next theorem helps us solving the problem in
general.

Theorem 2.1.7 (Full Multiplication Rule) For arbitrary random variables
�1 , . . . , �= with %A [�1 ∩ · · · ∩ �=] > 0 we have

%A [�1 ∩ · · · ∩ �=] = %A [�1] · %A [�2 |�1] · %A [�3 |�1 ∩ �2] . . . %A [�= |�1 ∩ · · · ∩ �=−1]

Exercise 3. Show that if %A [�|�] = %A
[
�|�̄

]
and �̄ = Ω\�, then � and

� are independent.

2.2 Discrete Random Variables

Often we are not really interested in the result of a random experiment.
What we are really interested in are the consequences of such a result. For
example when we play the roulette, we are not really interested in the
number that comes out, but in the possible win or loss.

Example 2.2.1 Consider an unfair coin with probability of head (H)
of 0.4 and a probability of tail (T) of 0.6. We do the following bet: if
the coin shows head we lose 100$, otherwise we win 80$. How large is
the win? It is useful to consider a function - that maps every possible

2 Probability Theory 27

result of the random experiment to the corresponding win (or loss).
We have

-(�) = −100 with probability 0.4
-()) = 80 with probability 0.6

or, in a more compact form

- ∼
{

0.4 0.6
−100 80

This example motivates the following definition.

Definition 2.2.1 (Random Variable) A function

- :Ω→ ℝ

$→ -($)

is called random variable. The function

5 :-(Ω) → [0, 1]
G → 5 (G) := %A [- = G]

is called probability distribution of the random variable -. If - takes a
countable number of values, we call it discrete random variable.

It is useful to represent a discrete random variable - that takes values
{G1 , G2 , . . . } and with ?: := 5 (G:) = %A [- = G:] for : = 1, 2, . . . in the
following form

- ∼
{
G1 G2 . . . G: . . .

?1 ?2 . . . ?: . . .

Example 2.2.2 (Indicator RandomVariable) A very important example
of random variable is the indicator random variable. For an event
� ⊆ Ω, we define the corresponding indicator random variable as

-($) =
{

1 if $ ∈ �
0 otherwise

Definition 2.2.2 (Cumulative Distribution) Let - be a random variable.
We define the cumulative distribution function �(-) as

�(G8) := %A [- ≤ G8] =
8∑
:=1

?:

�(-) returns the probability, that - takes a value less equal than a given G.

Note that we can use �(G) also to express %A [- > G]

2 Probability Theory 28

%A [- > G] = 1 − %A [- ≤ G] = 1 − �(G)

Definition 2.2.3 (Operations on Random Variables) Let - be a discrete
random variable and 6 : ℝ → ℝ be a real function. We describe the
distribution of 6(-) as

- ∼
{
6(G1) 6(G2) . . . 6(G:) . . .

?1 ?2 . . . ?: . . .

Independence of Random Variables

Definition 2.2.4 The random variables -1 , . . . , -= are independent if and
only if for all {G1 , . . . , G=} in the codomain of -1 , . . . , -= it holds

%A [-1 = G1 , . . . , -= = G=] =
=∏
8=1

%A [-8 = G8]

An important theorem about independent random variables is the fol-
lowing.

Theorem 2.2.1 Let 51 , . . . , 5= be real functions. If the random variables
-1 , . . . , G= are independent, then also 51(-1), . . . , 5=(-=) are independent.

Expected Value

The expected value is useful to determine the average outcome of a
random experiment. We define it as follows.

Definition 2.2.5 (ExpectedValue) Wedefine the expected value of a random
variable - as

E [-] :=
∑
$∈Ω

-($) · %A [$]

if this sum is absolute convergent. Otherwise, we say that the expected value
is not defined.

One can show that, if the random variable maps results of a random
experiment to natural numbers. an equivalent definition of expected
value is given by

E [-] =
∞∑
8=1

%A [- ≥ 8]

A crucial property of the expected value is linearity. This property is very
useful to solve a lot of exercises in this course. Formally, we have

2 Probability Theory 29

Theorem 2.2.2 For random variables -1 , . . . , -= and 01 , . . . , 0= , 1 ∈ ℝ,
we have

E

[
1 +

=∑
8=1

08-8

]
= 1 +

=∑
8=1

08E [-8]

This property is particularly useful if a random variable can be expressed
as a sum of simpler random variables with known expected value.

Example 2.2.3 We toss a fair coin 100 times. How many heads do we
expect? We denote with - the number of heads and for 8 = 1, . . . , 100
we define -8 as the indicator random variable for head. We get

E [-] = E

[
100∑
8=1

-8

]
=

∑
8=1

100E [-8] =
100∑
8=1

1
2
= 50

Theorem 2.2.3 For independent random variables -1 , . . . , -= , we have

E

[
=∏
8=1

-8

]
=

=∏
8=1

E [-8]

Exercise 4. Define a random variable - for which E [-] is undefined.

Exercise 5. Given a graph � with 2= vertices, with = vertices blue and =
vertices red. The probability that there is an edge between two edges is
1
2 for all pair of nodes. What is the expected number of edges between
vertices of the same color?

Exercise 6. Consider a sequence of natural numbers in the interval [0, 9].
What is the expected length of the sequence until we get 0, 1, ..., 9 (not
consecutively, but in this order)?

Variance

The expected value E [-[of a random variable - gives some useful
information about it, but it does not say how - is spread. Wewould "like"
to have a random variable such that %A

[
|- − E [-] | large

]
is small. This

definitely does not always hold, consider for example a random variable
such that %A [- = 0] = 0.5 = %A

[
- = 1010] . Therefore we introduce

another quantity to measure the spread of the distribution around its
mean.

Definition 2.2.6 (Variance) For a random variable - with � = E [-], we
define its variance as

+0A [-] := E
[
(- − �)2

]
=

∑
$∈Ω
(-($) − �)2%A [$]

2 Probability Theory 30

We also define the standard deviation �(G) :=
√
+0A [-]

Computing the variance with the definition is quite tedious. One can
show that the definition is equivalent to the following formula

+0A [-] = E
[
-2] − E [-]2

Two other important results about variance are given in the following
theorems.

Theorem 2.2.4 For an arbitrary random variable - and 0, 1 ∈ ℝ we have

+0A [0 · - + 1] = 02 ·+0A [-]

Theorem 2.2.5 For independent random variables -1 , . . . , -= , we have

+0A

[
=∑
8=1

-8

]
=

=∑
8=1

+0A [-8]

Exercise 7. Given is the following distribution of a random variable -

- ∼
{
−4 − 2 5 8 10
0.25 0.10 0.20 0.15 0.30

Compute E [2- + 8] and +0A [2- + 8].

Multiple Random Variables

Wemight find experiments in which we always observe multiple random
variables at the same time, such as throwing a dice with both number
and color on each face. We then obtain a joint probability

5-,.(G, H) = %[- = G, . = H]

which expresses the probability of observing values G and H for the two
random variables - and .

It is possible to extract the individual probability distributions bymarginal-
ization

%[- = G] = 5-(G) =
∑
H∈W.

5-,.(G, H)

And similarly for %[. = H].

Theorem 2.2.6 Let - and . be two independent RV, and / = - + .. We
then have

5/(I) =
∑
G∈W-

5-(G) · 5.(I − G)

2 Probability Theory 31

This allows us to compute the density function of a random variable
using those of others, whichmight be helpful if we don’t have the analytic
function for 5/ .

Theorem 2.2.7Wals’s equation states the following: let - and # be two
independent random variables, with W# ⊆ ℕ. We further have / =

∑#
8=1 -8

where all -8 are independently distributed according to -. It then holds

�[/] = �[#] · �[-]

It’s easy to intuitively see that this holds since we expect to have E[#]
copies of the same random variable, with the same expected value.

2.3 Important Discrete Distributions

Following, some of the most common and useful distributions are given,
with density, expected value and variance.

Bernoulli Distribution

ABernoulli random variable can take two values, 1 and 0 with probability
? and 1 − ? respectively. This is useful to describe events that either
happen or don’t.

- ∼ �4A(?)

5-(G) =

? for G = 1
1 − ? for G = 0
0 else

E[-] = ? +0A[-] = ?(1 − ?)

Exercise 8. Compute the variance of - ∼ �4A(?).

Binomial Distribution

A Binomial random variable is useful in the case of repeated Bernoulli
events. For example, we can describe the probability of scoring a certain
number of points in a game. We have = repeated Bernoulli events, each
distributed with probability ?. The assumption is that the events are i.i.d.,
i.e. independently and uniformly distributed.

- ∼ �8=(=, ?) =
=∑
8=1

�4A(?)

5-(G) =
{ (

=
G

)
?G(1 − ?)=−G for G ∈ {0, 1, ..=}

0 else

E[-] = =? +0A[-] = =?(1 − ?)

2 Probability Theory 32

Exercise 9. Consider a football league. A victory gives 3 points and a loss
1 points. There is no draw possible. Each team plays 15 games. Consider
a team that wins each game independently with probability ? = 0.6. Let
- be the random variable for the number of points obtained by the team.
Compute E [-] and +0A [-].

Geometric Distribution

A geometric random variable is used to describe the amount of time or
events we have to wait for a Bernoulli event to happen. For example, it
can be used to estimate the MTBF (mean time between failures), or the
expected life of a hard disk before it dies.

- ∼ �4>(?)

5-(G) =
{
?(1 − ?)G−1 for G ∈ ℕ
0 else

E[-] = 1
?

+0A[-] =
1 − ?
?2

An important property of the geometric distribution is the fact that it is
memoryless. The fact that an event happened in the past doesn’t change the
probability of it happening in the future (for independent variables).

%[- ≥ B + C |- > B] = %[- ≥ C]

Exercise 10. Compute the expected value of - ∼ �4>(?)

Negative Binomial Distribution

The negative binomial distribution is a generalization of the geometric
distribution: instead of waiting for the first success, we repeat the exper-
iment until we got = successes. Of course, if = = 1, we are back to the
geometric distribution. But what if = is larger? The random variable -
describes the number of repetitions until we see = successes of an event
with probability ?. Since the last repetition must be a success, we can
obtain the distribution of - by distributing the other repetitions. We
get

%A [- = I] =
(
= − 1
I − 1

)
· ?=(1 − ?)I−=

Exercise 11. Compute E [-]

2 Probability Theory 33

Poisson Distribution

A Poisson random variable with parameter �models the probability that
a particular number of events will happen in a given time frame. The
parameter means that in the given time frame, on average, � such events
happen. One example could be the number of births in Switzerland per
week.

- ∼ %>(�)

5-(G) =
{

4−��G
G! for G ∈ ℕ0

0 else

E[-] = � +0A[-] = �

When we consider the limit lim=→∞ �8=(=, �=) we obtain that it equals
%>(�).

Exercise 12. Compute the expected value of - ∼ %>(�).

2.4 Coupon Collector Problem

In this script this problem is presented in a paragraph after the presenta-
tion of the geometric distribution. However, this problem is so important
that I think it’s worth being subject of an entire section. Consider that you
have to complete a collection of = items 00 , . . . , 0=−1. At each iteration,
you get an object u.a.r from the collection of objects. The CouponCollector
Problem studies the random variable - that describes the number of
iterations until the collection is completed. The key idea to approach the
situation is to break it down into phases: phase 8 describes the random
variable to collect (8−1) items. Let-8 be the number of iterations in phase
8. We have - =

∑=
8=1 -8 . We observe that phase 8 ends, when we get one

of the = − 8 + 1 items that we don’t have yet. Hence -8 is a geometric
random variable with parameter =−8+1

= and E [-8] = =
=−8+1 . We can now

compute the expected value of the Coupon Collector Problem.

E [-] =
=∑
8=1

E [-8] =
=∑
8=1

=

= − 8 + 1
= =

=∑
8=1

1
8
= = · �= = = ln = + O(=)

Exercise 13. Consider the coupon collector of = elements starting with
already =/2 elements. Compute the expected number of rounds until
completion.

2.5 Important Inequalities

In the script you have seen an important example that shows that the
expected value describes the mean of the results of several repetitions
of a random experiment. However, if we consider a single realization of
the random experiment, this value could be quite far from the expected

2 Probability Theory 34

value in some (but not all) cases. This fact motivates us to introduce three
useful inequalities.

Theorem 2.5.1 (Markov’s Inequality) Let - be a random variable that
takes only non-negative values. Then, for all C ∈ ℝ+, we have

%A [- ≥ C] ≤ E [-]
C

Proof. We have

E [-] =
∑
$∈Ω

-($)%A [$]

≥
∑

$∈Ω,-($)≥C
-($)%A [$]

≥ C
∑

$∈Ω,-($)≥C
%A [$] = C · %A [- ≥ C]

Theorem 2.5.2 (Chebyshev’s Inequality) Let - be a random variable and
C ∈ ℝ+. We have

%A [|- − E [-] | ≥ C] ≤ +0A [-]
C2

Proof. We have %A [|- − E [-] | ≥ C] = %A
[
(- − E [-])2 ≥ C2

]
. Since the

latter is a non-negative randomvariablewe can applyMarkov’s inequality
and get

%A [|- − E [-] | ≥ C] = %A
[
(- − E [-])2 ≥ C2

]
≤

E
[
- − E [-])2

]
C2

=
+0A [-]

C2

Informally, this estimates the probability that the realization of a ran-
dom variable will differ too much from the expected value. This is the
probability that - ∈ [E[-] − C ,E[-] + C]. An upper bound is given, that
depends on the variance (the larger the variance, the more likely that -
will lie at the extremes) and t (the bigger, the less likely it is to vary by
that amount).

We conclude this section by stating without proof, three other important
inequalities known as Chernoff’s bounds. The inequality of Chernoff
gives a usually much more precise result than Markov and Chebyshev.
This is because the previous two inequalities work with any non-negative
random variable, whereas Chernoff works only for the sum of indepen-
dent Bernoulli variables with the same parameter ?.

Theorem 2.5.3 If we have -1 , ..., -= iid ∼ �4A(?) then it holds for - =

2 Probability Theory 35

∑=
8=1 -8 and every � ∈]0, 1]

%[- ≥ (1 + �)E[-]] ≤ 4− 1
3 �

2E[-]

%[- ≤ (1 − �)E[-]] ≤ 4− 1
2 �

2E[-]

%[- ≥ C] ≤ 2−C for C ≥ 24E[-]

Exercise 14. Show by an example that non-negativeness of the random
variable is necessary to use the Markov’s inequality.

Exercise 15. Consider a test with 18 questions and two possible answers
to each question. If one guesses each answer, what is the probability
of answering correctly to between 5 and 13 answers? Use Chebyshev’s
inequality.

2.6 Solutions

Solution 1. By the law of total probability the answer is

% + (1 − ?) · 0.25

Solution 2. Yes, it is better to accept the offer. Let � be the event "you
chose the door with the car" and let � the event "by changing door you
win the car". We have

%A [�] = %A [�|�] · %A [�] + %A
[
�|�̄

]
· %A

[
�̄
]
= 0 + 1 · 2

3
=

2
3

You can see this result by enumerating the sample space and looking at
what happens.

Solution 3. By the law of total probability we have

%A [�] = %A [�|�] · %A [�] + %A
[
�|�̄

]
· %A

[
�̄
]

= %A [�|�] · (%A [�] + %A
[
�̄
]
)

= %A [�|�]

which is a sufficient condition for independence.

Solution 4. We have the following bet: we thrown fair coin until we get
an head. If the needed number of tosses is odd, we win 2: , otherwise we
lose 2: . Let - be the random variable for the expected win. If we plug
the data in the formula for the expected value we get

∞∑
:=1
(−1):−1 · 2: ·

(
1
2

) :
= 1 − 1 + 1 − 1 + . . .

which does not converge.

2 Probability Theory 36

Solution 5. We have 2 ·
(
=
2
)
tuples of nodes with the same color. We

define a random variable -8 for each of this tuples. The expected number
of edges between nodes of the same color is

E

2(=2)∑
8=1

-8

 =
2·(=2)∑
8=1

E [-8] = 2 ·
(
=

2

)
· 1

2
=

(
=

2

)

Solution6. Wedefine. as the randomvariable for the requestedquantity.
We then define .: as the length to get the :-th number after we already
got a sequence with the : − 1 numbers. .: is geometric distributed with
parameter 0.1. Since . =

∑9
8=0.: , we get

E

[
9∑
8=0

.:

]
=

9∑
8=0

E [.:] = 100

Solution 7. We define the indicator random variable (for the number
of victories in 15 matches. (is binomial distributed with parameters 15
and 0.6. We have - = 3(+ (15− () = 2(+ 15. By using the properties of
expected value and variance we get

E [2(+ 15] = 2E [(] + 15 = 2 · 15 · 0.6 + 15 = 33
+0A [2(+ 15] = 4+0A [(] = 14.4

Solution 8. We have

E [-] = 4
+0A [-] = 33

E [2- + 8] = 16
+0A [2- + 8] = 132

Solution 9. We compute

E
[
-2] = E [-] = ?

Hence we have

+0A [-] = E
[
-2] − E [-]2 = ? − ?2 = ?(1 − ?)

2 Probability Theory 37

Solution 10. We get

E [-] =
∞∑
8=0

8 · ?(1 − ?)8 = ?(1 + 2(1 − ?) + 3(1 − ?)2 + · · · + :(1 − ?):−1)

= ?((1 + (1 − ?) + (1 − ?)2 + . . .) + ((1 − ?) + (1 − ?)2 + . . .) + ((1 − ?)2 + (1 − ?)3 + . . .) + . . .)

= ?(1
?
+
(1 − ?)
?
+
(1 − ?)2

?
+ . . .)

= (1 + (1 − ?) + (1 − ?)2 + . . .)

=
1
?

Solution 11. We have

E [-] =
∞∑
:=0

:
�:

:!
4−�

=

∞∑
:=1

:
�:

:!
4−�

=

∞∑
:=1

�:

(: − 1)! 4
−�

=

∞∑
:=1

�
�:−1

(: − 1)! 4
−�

= �
∞∑
:=0

�:

:!
4−� = �

Solution 12. We introduce a random variable -8 that describes the
number of repetitions for the 8-th success. -8 is a geometric distributed
with parameter ? and - =

∑=
8=1 -8 . We have

E [-] = E

[
=∑
8=1

-8

]
=

=∑
8=1

E [-8] =
=∑
8=1

1
?
=
=

?

Solution 13. We have

=∑
8==/2

=

= − (8 − 1) = =
=/2+1∑
8=1

1
8
= =(�=/2+1 + O(1))

Solution 14. Consider the random variable - that has %A [- = −2] =
0.5 = %A [- = 2]. If we would apply the Markov’s inequality we would
get for example

%A [- ≥ 1] ≤ E [-] = 0

But this of course does not hold since - takes value 2 with probability
0.5.

Solution 15. We have a binomial random variable - with parameters 18

2 Probability Theory 38

and 0.5.We haveE [-] = 9 and+0A [-] = 4.5.We can apply Chebyshev’s
inequality and we get

%A [5 ≤ - ≤ 13] = 1 − %A [|- − E [-] | ≥ 5] ≥ 1 − 4.5
25

=
41
50

Randomized Algorithms 3
In the course Algorithms and Data Structures and in the first chapter
of this course you have encountered many algorithms: Karatsuba’s
algorithm, dynamic programming algorithms,merge sort, DFS, Kruskal’s
algorithm... All this algorithms are deterministic, i. e. given an input they
always return the same output. Here we study randomized algorithms, i. e.
algorithms that may return different outputs in different executions. A
more formal approach to define randomized algorithms (which is not
absolutely essential for the purpose of this course) could be: randomized
algorithm are deterministic algorithms if we consider that their input
consists not only of the data relative to the problem, but also of an
(infinite long) sequence of random bits. A more intuitive definition could
be that randomized algorithms have access to the (pseudo) random
number generator of Java, and hence you can generate samples from a
distribution of your choice. Randomized algorithms are beautiful. First,
they are often very elegant and their analysis is often very clean. Second,
they are powerful: some problems that are very difficult to solve, such as
the NP-complete longest path problem, can be efficiently approximated
via randomized algorithms (at least for short longest paths).

We distinguish two classes of randomized algorithms: Monte Carlo
algorithms and Las Vegas algorithms. Monte Carlo algorithms have
a deterministic complexity, but they can return wrong answers. Las
Vegas algorithms can either return "’???" or the correct answer, but their
complexity is randomized. Of course, we consider useful only Monte
Carlo algorithms that return the right answer with high probability (e.g.
just guessing the result would be a very fast Monte Carlo algorithm,
but this would be completely useless) and Las Vegas algorithms that,
in expectation, don’t take too much time to return the correct answer.
We point out that, in their most wild form, Las Vegas algorithms don’t
stop running until they have an answer. Since we can not run a program
forever, we use stopping criteria, e.g. if the algorithm does not have
an answer in an hour we return "???". So, when a Las Vegas algorithm
returns "???" it either means that there is no solution (and hence the
algorithm without stopping criterion would have never stopped) or that
there is a solution but the algorithm has not found it yet.

Exercise 16. Which of the following Monte Carlo algorithms are useful
for a problem that requires a binary answer?

I An algorithm that returns the correct answer with probability 0.6
I An algorithm that returns the correct answer with probability 0.5
I An algorithm that returns the correct answer with probability 0.4

Exercise 17. Does the answer to the previous exercise change if we
consider a maximization problem?

3 Randomized Algorithms 40

Exercise 18. How can we transform a Monte Carlo algorithm to a Las
Vegas algorithm? What about the opposite direction?

3.1 Success Probability Amplification

In this section we explore some techniques useful to design Las Vegas
and Monte Carlo algorithms with certain properties. .

Las Vegas Algorithms

We know that a Las Vegas algorithm either returns the correct solution
or "???". We assume that the probability that the Las Vegas algorithm
returns the correct solution is at least �. How many times should we
repeat the algorithm in order to get the correct answer with probability at
least 1 − �? If we repeat the algorithm # times, the probability to always
get "???"is at most

(1 − �)# ≤ 4−�·#

So we just fix our goal 4−�·# ≤ � and we obtain # ≥ �−1 ln(�−1).

Monte Carlo Algorithms: One Sided Errors

Here we consider Monte Carlo algorithms for decisional problems. Some
algorithms return always YES, if the answer is YES and either YES or
NO when the answer is NO. In this scenario, if we get a NO we are sure
that the answer is correct; if we get a YES we remain with the doubt.
We assume that the probability of saying NO when the answer is NO is
at least �. In order to get a good error probability, we do the following:
we repeat the algorithm # times and as soon we get an answer NO we
return NO. If we get # times YES we return YES. How big should #
be in order to have an error probability of at most �? Our algorithm is
wrong if we have a NO instance and the algorithm returns # YES in a
row. Such probability is bounded by

(1 − �)# ≤ 4−�·#

Similarly as before,we set ourgoal 4−�·# ≤ � andweget# ≥ �−1 ln(�−1).

3 Randomized Algorithms 41

Monte Carlo Algorithms: Two Sided Errors

Some Monte Carlo algorithms for decisional problems does not have
the property above. They just return the correct answer with probability
1
2 ± � for � > 0 (if the algorithm is more likely to fail, we just have to
flip its answer). An algorithm to amplify the success probability is the
following: we run the algorithm # times and we return the majority of
the answers. As before, we have to choose # large enough in order to
have confidence of our answer. The calculations in this scenario are a little
bit more complicated than before (they can be derived with Chernoff
Bound as you have seen in class). Here we just state that in order to have
an error probability of at most �, we have to choose # ≥ 4�−2 ln(�−1).

Monte Carlo Algorithms: Optimisation Problems

Monte Carlo algorithms can be useful also in the context of maximization
(or minimization) problems. Assume that we have an algorithm that
returns the optimal solution with probability at least �. The strategy is
to repeat the algorithm # times and keep the best solution. We want to
choose # such that the probability to return a sub-optimal solution is
at most �. We return a sub-optimal solution if all # repetitions of the
algorithm fail. This probability is at most

(1 − �)# ≤ 4−�·#

Hence, in order to have a success probability of at least 1 − �, we choose
≥ �−1 ln(�−1).

3.2 Target Shooting

The goal of this section is to analyse an algorithm to compute |(||* | , where
(and* are finite sets with (⊆ * . Here we assume that we can generate
elements D ∈ * u.a.r and that we can efficiently compute an indicator
function �((D) which, given an element D ∈ * , tells us whether D is in (
or not. Popular examples of this algorithms include computing the area
of an object in a geographic map. The algorithm that we use is simple:
we sample # elements from * and we use the samples with the test
function to estimate the desired ration. Formally

Algorithm 3.1: Target-Shooting1 Choose D1 , . . . , D# u.a.r fro*
2 return 1

#

∑#
8=1 �((D8)

It is intuitively clear that this value approximates |(||* | and that a larger
value # leads to a better result. We want to give quantitative arguments
to this idea and give criteria for the choice of the parameter # .

Theorem 3.2.1 The expected value of the returned result is equal to the true
ratio |(||* | .

3 Randomized Algorithms 42

Proof. We define a variable .8 for each sample D8 . .8 is bernoulli dis-
tributed with parameter |(||* | . We return 1

#

∑#
8=1.8 , which has expected

value |(||* | .

The variance of the same random variable is 1
(
|(|
|* | − (

|(|
|* |)2): this tells us

that larger value of # lead to an approximation closer to the expected
value, and hence closer to the true result. We want to find a value of #
such that

%A

[
|. − |(||* | | ≤ �

|(|
|* |

]
≥ 1 − �

for arbitrary �, � > 0. The answer is given by the following theorem.

Theorem 3.2.2 Let �, � > 0. If # ≥ 3 |* ||(| · �−2 · log(2�), then the output
of the Target-Shooting algorithm is with probability 1 − � in the interval[
(1 − �) |(||* | , (1 + �)

|(|
|* |

]
Proof. We define a variable / =

∑=
8=1.8 with .8 defined as above. We

have E [/] = # |(||* | . We need to find an # such that

%A [|/ − E [/] | ≥ � · E [/]] ≤ �

Since/ is the sumof independent Bernoulli variableswe can useChernoff
Bound and get

%A [|/ − E [/] | ≥ � · E [/]] ≤ 24−�
2E[/]/3 = 24−�

2#
|(|

3|* |

With a choice # = 3 |* ||(| · �−2 · log(2/�) the probability is at most �.

Exercise 19. Design a Target-Shooting algorithm to approximate � with
the help of a random number generator that generates only numbers in
the interval [0, 1].

3.3 Long Paths

In the course Algorithms and Data Structures you have seen multiple
algorithms to compute shortest paths. At this point a natural question is:
can we modify those algorithms in order to compute longest paths? We
start by looking at a special case, directed acyclic graphs. Computing
longest paths in this situation is easy: we just multiply all the weights
by minus one and we use the tools from the previous semester. For
most graphs, this transformation is not useful because it creates cycles of
negative length in the graph. But in the case of directed acyclic graphs,
then no negative cycles can be created.

3 Randomized Algorithms 43

In the general case, however, this problem is NP complete. We want to
prove this by showing a reduction to the Hamiltonian cycle problem.
Before we do that, we introduce the decisional variant of the prob-
lem: given a graph � and a natural number �, decide whether there
is a path of length � in �. We observe that if we can solve the deci-
sional variant in polynomial time, we can also solve the longest path
problem with a "binary search" approach. The plan to show that the
long path problem is NP complete is the following: we create a graph
�′ such that � has an Hamiltonian cycle if and only if �′ contains a
path of length = (where = is the number of vertices in �). We con-
struct �′ as follows. First, we choose an arbitrary vertex E in � and
we remove it from the graph. Instead of removing also the incident
edges to E, we substitute the edges {E, F1}, . . . , {E, F346(2)} with edges
{F̄1 , F1}, . . . , {F̄346(E) , F346(E)}, where F̄1 , . . . , F̄346(E) are new nodes.
We want to show that � has an Hamiltonian cycle if and only if �′ has a
path of length =. For the first direction we let < E1 , . . . , E= > be an Hamil-
tonian cycle in �. Without loss of generality, we let E = E1 be the node
that we removed in the construction of �′. Then < Ē2 , E2 , . . . , E= , Ē= > is
a path of length = in �′. For the other direction we let < D0 , . . . , D= > be a
path of length = in �′. We observe, that the nodes D1 , . . . , D=−1 must have
degree at least two, and hence they must be the nodes of � that we didn’t
remove. It naturally follows that D0 and D= are two of the new nodes that
we introduced in the construction of �′. Hence < E, D1 , . . . , D=−1 , E > is
an Hamiltonian cycle in �. It is easy to see that creating �′ from � can be
done in polynomial time, hence we have shown a polynomial reduction
from the long path problem to the (presumably) hard Hamiltonian cycle
problem.

We have shown that the long path problem is NP complete and hence
it is at least plausible to think that no polynomial algorithm exists for
this task. But this does not mean that we have to give up completely. For
example, in biology, longest paths in graphs are often relatively short.
Hence we want to solve the decisional problem for small �, concretely
for � ∈ O(log =). In order to solve this task we first introduce another
problem, the colorful-path problem, and then we show how an algorithm
for it can be used as subroutine for a randomized algorithm for the long
path problem with small �.

Colorful-Path Problem

Let : ∈ ℕ. We color a graph � = (+, �) with the function � : + → [:]
(where � describes an arbitrary coloring, e.g. neighbours can get the
same color). We say that a path is called colored if all its vertices have
different color. We now define the colourful-path problem: given a graph
� and a color function �, decide whether there is a colored path of length
: − 1 in � colored with �. In order to determine, whether the colored
graph contains a colored path of length : − 1, we define the following
quantity

%8(E) := {(∈
(
[:]
8 + 1

)
|∃ a colored path that ends in E with the colors in (}

3 Randomized Algorithms 44

Of course, it hold that

I ∀(∈ %8(E) : �(E) ∈ (
I %0(E) = {{�(E)}}
I %1(E) = {{�(G), �(E)}|G ∈ #(E), �(G) ≠ �(E)}

We observe that there is a colored path of length : − 1 in � if and only if
∪E∈+%:−1(E) ≠ ∅. Hence, to solve the colorful-path problem, we compute
%:−1(E) for all vertices E and we check, whether there is one of such paths
or not. The next question is how to compute %:−1(E) for a given vertex.
Since we have that

%8(E) = ∪G∈#(E){' ∪ {�(E)}|' ∈ %8−1(G) and �(E) ∉ '}

andwe have a trivial base case for 8 = 0, we can implement use a dynamic
programming approach with increasing value of 8.

Algorithm 3.2: ColoredPath(G, i)1 for all E ∈ +
2 for all G ∈ #(E)
3 for all ' ∈ %8−1(G)with �(E) ∉ '
4 %8(E) ← %8(E) ∪ {' ∪ {�(E)}}

Algorithm 3.3: ShortLongPath(G)1 for all E ∈ +
2 %0(E) ← {{�(E)}}
3 for 8 = 1, . . . , : − 1
4 %0(E) ← {{�(E)}}
5 return ∪E∈+%:−1(E) ≠ ∅

Since ColoredPath(G,i) has complexity

O

(∑
E∈+

346(E) ·
(
:

8

)
· 8

)
∈ O

((
:

8

)
· 8 · <

)
our final algorithm has complexity

O

(
|+ | +

:−1∑
8=1

((
:

8

)
· 8 · <

)
+ |+ |

)
= O(2: :<)

which is polynomial if : ∈ O(log =).

Short Long Path

Now thatwe have a deterministic algorithm for the colorful-path problem
(which is polynomial for : = O(log =)), we go back to our original
problem of determining whether � contains a path of length �. We use
the following Monte Carlo algorithm:

3 Randomized Algorithms 45

1. Set : = � + 1 and color � randomly with : colors.
2. Use the algorithm of the previous section to find a colored path

with : vertices. Repeat this operation � · 4 : times.
3. If at least one of the repetition of the previous step found a colored

path with : vertices, we have a long path of such length. Otherwise
we return that no such path exists.

The runtime of the Monte Carlo algorithm is simply given by multiplying
the complexity of the algorithm of the previous section with the number
of repetitions. We get

O

(
� · 4 : · 2: :<

)
which is polynomial if : = O(log =). For the success probability we
observe the following:

I If there is no path with : vertices, the success probability is one.
I If there is a path with : vertices, we fail only if in every iteration

our random coloring is unlucky. The probability of coloring the
path of length : with : different colors is :!

::
≥ 4−: .

With this argument, it is easy to see that the failure probability is at most
(1 − 4−:)�·4 : ≤ (4 4−:)�·4 : ≤ 4−�.

3.4 Min Cut

In this section we consider undirected graphs � = (+, �) without loops,
but we allow multiple edges of weight one between the same pair of
nodes. Such graphs are often known as multigraphs. It would be possible,
instead of considering multiple edges with weight one, to allow simple
edges of positive weight, but with multigraphs everything is much more
neat. We say that a set � ⊆ � is a cut in � if (+, �\�) is not connected.
We are interested in finding a cut in � of minimum cardinality, a so called
min cut. With �(�) we denote the size of a minimum cut in � (note that
the minimum cut does not have to be unique).

Some important facts

Throughout this section we repeatedly use an operation called edge
contraction. Let � be a multigraph and let 4 = {D, E} be an edge of �. The
contraction of 4 means that we glue D and E together into a single new
vertex and we remove loops that may have arisen in this way (multiple
edges are retained). The resulting graph is denoted by �\4. This is
illustrated in the following figure:

Every contraction reduces the number of nodes by exactly one and the
number of edges by at least one.

Lemma 3.4.1 Let � be a multigraph and 4 an edge of �. Then �(�\4) ≥
�(�). Moreover, if there exists a minimum cut � in � such that 4 ∉ �, then

3 Randomized Algorithms 46

�(�\4) = �(�).

Lemma 3.4.2 Let � = (+, �) be a multigraph with = vertices. Then the
probability of �(�) = �(�\4) for a randomly chosen edge 4 ∈ � is at least
1 − 2

= .

Proof. Let � be a min cut in � of size : (i. e.we have : = |� | = �(�)). We
observe that the degree of an arbitrary node in � is at least : (otherwise
the min cut would have a cardinality less than :). Hence we have:
2|� | = ∑

E∈+ 346(E) ≥ :=. By applying this formula and Lemma 3.4.1 we
get:

%A
[
�(�\4) = �(�)

]
≥ %A [4 ∉ �] = 1 − |� ||� | ≥ 1 − :

: =2
= 1 − 2

=

Basic Version

In this section we assume that the input graph is connected. We assume
that the graph is represented in a way such that we can:

I perform an edge contraction in O(=)
I choose an edge uniformly at random among all edges of the current

multigraph in O(=)
I find the number of edges connecting two given vertices in O(1)

The idea is very simple: we consider a graph with two vertices as base
case (i. e. in this case we count the number of edges between the two
vertices and we return the size of the min cut). If we have more than two
vertices we repeatedly choose a random edge of the current graph and
we contract it, until only two vertices are left.

Algorithm 3.4: BasicMinCut(G)1 while � has more than two vertices do
2 4 ← u.a.r. edge in �
3 �← �\4
4 return size of cut in �

The runtime of this algorithm is O(=2). This is based on the following
observations:

I We execute the body of the while loop O(=) times.

3 Randomized Algorithms 47

I Both operations of the while loop take O(=).

By using the observations of Lemma 3.4.1, we see that this algorithm
always returns a number at least as large as �(�). If � is a minimum
cut in the input graph �, and if we never contract an edge of � during
the whole algorithm, then the returned number is exactly �(�). At first
sight it looks foolish to hope that no edge of � is ever contracted. After
all, to this end, the random choice would have to come out right (avoid
�) in each of the = − 2 steps. Common sense suggest that making = − 2
successful random choices in a row is extremely unlikely. The beautiful
insight is that in the considered case, a sequence of such right choices,
while somehow unlikely, is not extremely unlikely.

In general we note that the algorithm is correct if:

I �(�) = �(�\4) for the first contracted edge 4
I BasicMinCut succeeds for �\4

By applying Lemma 3.4.2 we get the following recurrence for the success
probability ?(=):

?(=) ≥
(
1 − 2

=

)
· ?(= − 1)

from which we get:

?(=) ≥ = − 2
=
· = − 3
= − 1

· = − 4
= − 2

. . .
2
4
· 1

3
· ?(2)︸︷︷︸

=1

=
2

=(= − 1)

In order to get an algorithm with an arbitrary good success probability
we use a Monte Carlo approach by running BasicMinCut # times and
return the smallest cut size found in all these runs. If the returned size
is not correct, it means that the algorithm failed # times in a row. The
failures in different runs are independent, and hence the probability of
failures in a row is bounded by:

(
1 − 2

=(= − 1)

)#
≤ 4−

2#
=(=−1)

where we used the inequality 1 + G ≤ 4G . If we set, for example, # =

10=(= − 1), then the failure probability is bounded above by 4−20 (which
is very small). By increasing the number of repetitions # , the failure
probability can be further decreased. Altogether, by setting # = 2 · =2we
have an algorithmwith runtime O(=4) (because we have O(=2) repetitions
of the O(=2) algorithm) and arbitrary small constant probability of
failure.

3 Randomized Algorithms 48

Bootstrapping

The probability of error in BasicMinCut increases with the number of
contractions (i. e. with the first contraction we have a probability error
of 2

= which is quite small, but for example the last iteration has an error
probability of 2

3 which is very large). Why should we take the risk of
contracting edges until we have only two vertices? It is better to do less
contractions (let’s say, until the graph has C nodes, where C has to be
chosen carefully) and then going on in another way which is perhaps
slower but has a better success probability. What algorithms can we use
to calculate the min cut when we have reached the threshold C? The
following are two possibilities:

I Thedeterministic networkmaxflowapproachwith runtimeO(=4 log(=))
I The Monte Carlo algorithm we have developed in the previous

section with runtime O(=4) and success probability 1 − 4−20

The plan is the following: first we explicitly show how a single layer of
bootstrapping can help to reduce the complexity of the algorithm, then
we show a more abstract argument that shows that we can get a limit
algorithm with complexity arbitrarily closed to O(=2).

First we do a single layer of bootstrapping, i. e.we contract the edges until
a threshold C and then we use the Monte Carlo approach of the previous
section to get the answer (i. e. we don’t take the risk of just contracting
edges until we have two vertices but we use something more involved).
We get the following algorithm:

Algorithm 3.5: BootstrappingMinCut(G)1 while � has more than C vertices do
2 4 ← u.a.r. edge in �
3 �← �\4
4 return size of cut in � in O(C4) and success probability 1 − 4−20

The runtime of a single repetition of the algorithm is O(=(=− C)+ C4). Now
we investigate the success probability (again, the algorithm is successful
if we never contract a wrong edge and if the algorithm we use when the
threshold C is reached returns the correct answer). We get:

?(=) ≥ = − 2
=
· = − 3
= − 1

· = − 4
= − 2

. . .
C + 1
C + 3

· C

C + 2
· C − 1
C + 1

· (1 − 4−20) = C(C − 1)
=(= − 1) (1 − 4

−20)

By using the same Monte Carlo approach we have seen for BasicMinCut,
we can do # iterations of BootstrappingMinCut in order to get a good
success probability. The algorithm fails if all # repetitions fail. This is
bounded by:

(
1 − C(C − 1)

=(= − 1) (1 − 4
−20)

)#
≤ 4−# ·

C(C−1)
=(=−1) (1−4

−20)

3 Randomized Algorithms 49

By choosing # =
20=(=−1)

C(C−1)·(1−4−20) we get a success probability of 1 − 4−20

(which is very high) and a runtime of O(=2

C2
(=2 + C4)). The success prob-

ability is independent on the choice of C, hence we must choose the C
which minimizes the runtime of our algorithm, i. e. we have to choose
the C which minimizes the expression:

=4

C2
+ =2C2

Here one could take the derivative w.r.t. C and then put it equal to zero in
order to find the minimum, but a very useful trick is the observation that
we obtain the minimum also if we balance the factors, i. e. if we find the C
such that =4

C2
= =2C2. By solving the equation we get that C = = 1

2 is optimal
and yields an algorithm with runtime O(=3) and success probability
1 − 4−20 (or with an arbitrary higher constant probability with the same
asymptotic runtime).

So far so good:we have seen thatwe can improve the runtime of theMonte
Carlo algorithmbased onBasicMinCut by contracting the graph to a good
threshold and then using the same algorithm for the smaller remaining
graph (the idea is that by having a smaller error probability from the
threshold Cwewill have to do less repetitions in order to get a high success
probability and hence a better runtime). But what if, instead of using the
algorithm with runtime O(=4)we now use our new algorithm with the
same (very high) success probability but improved runtime O(=3)? By
exploiting this idea we can get an additional layer of bootstrapping. Now
the question is: by using infinite layers of bootstrapping, what runtime
can we achieve? We give an answer to this question with the following
inductive argument, which suggests that there exist a limit algorithm
that solves the minimum cut problem.

We claim that there exists a sequence of algorithms A8 (with 8 ≥ 0),
such that. for all 8 ≥ 0, A8 finds a minimum cut in time O(= 5 (8)) with
probability at least 1

2 (which is arbitrary, by probability amplification
we can increase it to any constant less than one without increasing the
asymptotic runtime of the algorithm), where:

5 (8) :=

{
4 for 8 = 0
4 − 4

5 (8−1) otherwise

With our first Monte Carlo approach we have proven the cases for 8 = 0
and 8 = 1. Now we show how to construct �8+1 in general and we prove
that satisfy the desired properties.

Algorithm 3.6: A8+1(�)1 Set parameters # and C suitably
2 Repeat # times
3 � ← RandomContract(G,t)
4 call �8(�)
5 return smallest value

where:

3 Randomized Algorithms 50

Algorithm 3.7: RandomContract(G,t)1 while � has more than C vertices do
2 4 ← u.a.r. edge in �
3 �← �\4
4 return �

The analysis is very similar to the first layer of bootstrapping (in facts, this
was a special case). Hence we have (by applying the induction hypothesis
that A8 gives the correct answer with probability at least 1

2 , that A8+1

gives the correct answer with probability at least C(C−1)
2=(=−1) . Hence the error

probability with # repetitions is bounded by:

(
1 − C(C − 1)

2=(= − 1)

)#
≤ 4−# ·

C(C−1)
2=(=−1)

by choosing # =
2=(=−1)
C(C−1) we get a failure probability of at most 4−1 ≤ 1

2

as desired and runtime O(=2

C2
(=2 + C 5 (8))). By balancing both terms we

get that with C = =
2
5 (8) we have the desired runtime of O(=4−4 4

5 (8)), as
claimed. Since 5 (8) approaches 2 with 8 approaching∞ we have that the
limit algorithm with an infinite amount of bootstrapping layers yields an
algorithm of complexity O(=2).

3.5 Hashing

A hash table is a data structure used to implement an associative array, a
structure that can map keys to values. A hash function ℎ(:) is used to map
an arbitrary type of key (string, number, ...) to an index of the array, also
called bucket or slot.

Ideally, the hash function assigns to each key an unique value, but often
this is not possible: this causes collisions, when two or more keys map to
the same index. The better the hash function, the lower the collisions.

The function is used to distribute the entries (key, value) across the array.
To compute an index, usually two steps are performed, to ensure the
index is within bounds:

ℎ0Bℎ = ℎ(:4H)

8=34G = ℎ0Bℎ % 0AA0H_B8I4

Crucial to the performance of a hash function is the load factor, defined
as

! =
=

:

where = is the number of entries, : is the table size. The closer to 1 the
load factor is, the harder is for the hash function to map to an empty
bucket.

3 Randomized Algorithms 51

Closed Hashing

Just one entry per bucket, address might vary.
Some confusion might arise from these terms: the way I like to think
about is is that if the hashing is closed, only one (key, value) pair can
be stored per bucket (it’s closed, no extra space available). This means
that collisions must be resolved in some way, where the address might
change (open addressing).

Open Hashing

More entries per hash, address doesn’t change
On the other hand, on open hashing more entries can fit in the same
bucket, whichmeans theywill have the same address (closed addressing).
This requires the use of an auxiliary data structure (linked lists, trees, ...).
The following drawing might help to visualize these concepts:

Figure 3.1: Open vs Closed hashing

Collision Resolution

If the hasing is closed, then when a collision occurs we have to find
another free bucket where to put our entry. Usually, we try with different
offset. If our original hash value is ℎ(:), and our offsets are >1 , >2 , >3 , ...,
then we try the sequence

ℎ(:), ℎ(:) − >1 , ℎ(:) + >1 , ℎ(:) − >2 , ℎ(:) + >2 , ℎ(:) − >3 , ...

A few techniques are available to compute the offsets:

Linear Probing

The idea is to try all adjacent cells in linear order, until we find a free
one. The offsets are then simply 1, 2, 3, For example, for a key :, we
first try ℎ(:). If it isn’t free, then try the others in order. All together this
means we try

ℎ(:), ℎ(:) − 1, ℎ(:) + 1, ℎ(:) − 2, ℎ(:) + 2, ℎ(:) − 3, ...

The exact order is implementation dependant, but the main idea is the
same.

3 Randomized Algorithms 52

Quadratic Probing

The idea is somewhat similar to linear probing, but to reduce cluster
(many entries close to each other, they all take a lot of time to find a free
slot) then each time a collision happens, the probing distance is 82 instead
of 8. This means that the offsets are 12 = 1, 22 = 4, 32 = 9, For example,
we would try the sequence

ℎ(:), ℎ(:) − 1, ℎ(:) + 1, ℎ(:) − 4, ℎ(:) + 4, ℎ(:) − 9, ...

until either a free entry is found or we run out of possibilities.

Double Hashing

In double hashing, we have a second hash function ℎ′(:)which is used
to compute the offset to use for a key. The advantage is that if two keys
hash to the same bucket, then a different probing sequence will be used
for each of them, thus reducing the number of collisions. Assuming
ℎ′(:) = 9, then we would try the sequence

ℎ(:), ℎ(:) − 9 , ℎ(:) + 9 , ℎ(:) − 29 , ℎ(:) + 29 , ℎ(:) − 39 , ...

Cuckoo Hashing

The origin of the name is peculiar: it comes from some species of cuckoo
bird,which pushes out the eggs of othermales of the nest. In the sameway,
inserting a new key into a cuckoo hashing table might push a previously
inserted key into another position. It works as follows: two hash functions
ℎ and ℎ′ are used. When a collision occurs, then the previous entry is
pushed away and re-hashed with the function ℎ′, whereas the newly
inserted key takes its place. If another collision happens with the older
key, the process is repeated. This might lead to a non terminating amount
of swaps, if the initial configuration is reached. To ensure termination,
the size of the table might be dynamically resized (e.g. doubling it when
a threshold load factor is reached). Another variant is to use two smaller
tables, with each hash function mapping to one of them. In the worst
case, for both variants each (key, value) pair can be found in only two
different location, which bounds the worst case time. This is better than
many other variants.

3.6 Smallest Enclosing Circle

Definition 3.6.1 (Smallest Enclosing Circle) Given a set of pointsP in the
plane with |P| = = (i.e. P = {?1 , ..., ?=}, ?8 = (G8 , H8) ∈ ℝ2) the problem
of finding the smallest enclosing circle asks us to find a circle �(P)with center
(2G , 2H) and minimum possible radius A such that all points are contained in
this circle.

The following holds:

I points are allowed to be on the boundary

3 Randomized Algorithms 53

I there exists a subset & ⊆ Pwith |& | = 3 such that �(P) = �(&).
The points in & determine � uniquely.

Naive Algorithm

A trivial (and inefficient algorithm) is to simply go over all possible &,
compute the enclosing circle, check if it contains all points, and if so
return it. We are guaranteed in this case of having found a minimum
circle. However the algorithm takes $(=4).

Algorithm 3.8: Inefficient smallest enclos-
ing circle

1 while true
2 iterate over & ⊆ P, |& | = 3
3 compute �(&)
4 if P ⊆ �(&)
5 return �(&)

Randomized Algorithm

A better algorithm is to pick points randomly. Every time a point is found
to be outside the circle, we know that with higher probability it will be
on the border instead of those that are contained. Therefore we increase
the probability of picking it in the future by duplicating it.

Algorithm 3.9: Randomized smallest en-
closing circle

1 while true
2 pick & ⊆ P, |& | = 12 uniform at random
3 compute �(&)
4 if P ⊆ �(&)
5 return �(&)
6
7 duplicate all points outside �(&)

The algorithm computes the smallest enclosing circle in expected time
$(= log =).

Note that the number 12 is selected such that in the proof the number of
iteration converges.

3.7 Convex Hull

Definition 3.7.1 In euclidean space, a set (is defined convex if, for every
two points ?1, ?2 contained in the set (, all the points on the straight line
connecting the two points are also included in the set (. Formally

(convex ⇐⇒ ∀?1 , ?2 ∈ (, C ∈ [0, 1] : ?1 · C + ?2 · (1 − C) ∈ (

Given a set of points % in a 3-dimensional space ℝ3, |% | = =, the convex
hull � of % is the smallest convex set that contains %.

% = {G1 , ..., G=}, G8 ∈ ℝ3

3 Randomized Algorithms 54

For the planar case in 2� we have 3 = 2, and % = {(G8 , H8)8=1..=}.
The convex hull � can also be defined as all the points in space that are a
linear combination of the points in the set %, with the condition that the
coefficients assigned to every point must be all positive and sum up to
1. This is the weighted average of positive and normalized weights 8 .

�(%) =
{

=∑
8=1

8G8 | (∀8 8 ≥ 0) ∧
=∑
8=1

8 = 1

}

Figure 3.2: Convex hull of a set of points

For simplicity, we here assume that all points are in general position,
meaning that no three points on the same line and no two points have
the same x-coordinate.

Jarvis March

The idea of the algorithm is to start with a point ?0 guaranteed to be on
� (e.g. the left-most point) and iteratively looking at all points to find
the one that has all other points to its left, which guarantees that it will
also be on �. This point can be found in $(=) by iterating through the
other points and keeping the one which is the rightmost.

Informally, the algorithm proceeds as follows:

1. Select point ?0 that lies on convex hull (e.g. leftmost)

3 Randomized Algorithms 55

2. Find next point ?8+1, such that all other points lie left of the line
going through ?8 , ?8+1. To do this in$(=), we start with a candidate
point and we iterate through all other points. Whenever we find
a point on the right of the segment between ?8 and the candidate
points (this can be computed in constant time with a linear algebra
argument), we update the candidate.

3. Repeat until you reach ?0

Algorithm 3.10: Jarvis March1 2 ← leftmost(%)
2 8 ← 0
3 repeat
4 �[8 + +] ← 2

5 for 9 = 1 to =
6 if G 9 right of line
7 2 ← G 9
8 until 2 = �[0]

This algorithm computes the convex hull in $(= · ℎ), where ℎ is the
number of points that lie on the convex hull (border). This because the
algorithm takes $(=) for each iteration since the angle can be computed
in $(1). It requires ℎ loop iterations where ℎ = |� | is the amount of
points on the convex hull. This time isn’t optimal and there are algorithms
that perform much better. Moreover, some modifications are required
to address our general position assumption, but the runtime does not
change.

3.8 Solutions

Solution 16. An algorithm that returns the correct answer with probabil-
ity 0.6 is useful (the success probability can be amplificated to an arbitrary
threshold by calling the algorithm enough times). The same idea holds
for an algorithm that returns the correct answer with probability 0.4: we
flip the answer and then we amplificate the probability. The only useless
Monte Carlo algorithm is the one that returns the correct answer with
probability 0.5: this would be a random guessing and this probability
can not be amplificated.

Solution 17. Yes, in fact if we return the correct answer to amaximization
problem with probability ? > 0, we can amplificate it by calling the
algorithm : times and returning the maximum. The success probabilty
becomes

(1 − ?): ≤ 4−?:

which can be arbitrarily small with a proper choice of :. Note that, if :
has to be chosen so large that the runtime of : repetitions of the basic
algorithm becomes exponential, then our algorithm is very inefficient
and usually there is an easy deterministic variant.

3 Randomized Algorithms 56

Solution 18. Given a Monte Carlo algorithm (fixed runtime, maybe
wrong answer) we can do the following to get a Las Vegas algorithm
(unfixed runtime, correct answer): we run theMonte Carlo algorithm and
we test its solution. If the solution returned by the Monte Carlo algorithm
is correct we return the answer and we are over. Otherwise we repeat the
process until we have the correct solution.

Given a Las Vegas algorithm we can construct a Monte Carlo algorithm
in the following way: we run the Las Vegas algorithm for a fixed amount
of time. If the Las Vegas has found a solution we return it (this is the
correct solution), otherwise we return a random guess.

Solution 19. We generate # couples of numbers (G8 , H8) in [0, 1]. For
every couple we have an hit if G2

8
+ H2

8
≤ 1. We choose # according to the

theorem and the obtained result |(||* | will approximate �
4 .

	Contents
	Graph Theory
	Recap from Algorithms and Data Structures
	Minimum Spanning Tree
	Advanced Graph Concepts
	Matchings
	Eulerian Circuits
	Hamiltonian Cycles
	Travelling Salesman Problem
	Graph colouring
	Network Flow

	Probability Theory
	Basic Concepts of Discrete Probability Theory
	Discrete Random Variables
	Important Discrete Distributions
	Coupon Collector Problem
	Important Inequalities
	Solutions

	Randomized Algorithms
	Success Probability Amplification
	Target Shooting
	Long Paths
	Min Cut
	Hashing
	Smallest Enclosing Circle
	Convex Hull
	Solutions

