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Abstract

Evolutionary algorithms are optimisation heuristics that aim to opti-
mize functions f : {0,1}" — R. They iteratively evolve a (multi)set
of search points P C {0,1}" using the mutation operator under the
Darwin’s principle of “survival of the fittest”.

In this Bachelor thesis, we study the impact of duplicate avoidance
(a simple mechanism to promote diversity in the population P) for
the (2+ 1)-EA on HotToric functions, a class of monotone functions
that has proved itself as a successful benchmark in the literature. In
multiple situations, promoting diversity in the population is a goal that
should be pursued, because the (minor) overhead that they introduce is
largely compensated by a performance boost in the optimization time.
Here we show that this is not always the case: we will prove that there
are instances of HorToric where the duplicate avoidance mechanism
changes the behaviour of the classical (2 4+ 1)-EA, such that its runtime
shifts from quasi-linear to exponential.
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Chapter 1

Introduction

Evolutionary algorithms (EAs) are optimisation heuristics inspired by the
natural evolution of species. Countless applications as well as theoretical
results have demonstrated that these algorithms are effective on many hard
optimization problems. Moreover, they have the advantage that they can
be used also when the optimization problem is not well understood and
the design of problem-specific algorithms cannot be performed due to the
nature of the problem. For the scope of this thesis, they are exploited to
maximize a function f : {0,1}" — R by iteratively evolving a (multi)set of
candidate solutions, the population. We point out that using EAs for this
optimization problem is not always the best choice. In facts, if one has an
analytical representation of f or has the possibility to estimate its gradient,
then other approaches might be preferable. The EAs that we study here
work also if we have access to f only via a black-box evaluation.

We will formally define the structure of EAs in the next section of this chap-
ter, but we already state the general framework for the scope of this thesis.
The algorithm starts with a population of u search points {xi,...,x,} C
{0,1}", where each x; is chosen uniformly at random. The algorithm then
proceeds in rounds. In each round, the population is evolved with some
mathematical operators under the Darwin’s principle of “survival of the
fittest”. Concretely, in each round, the algorithm chooses some elements
from the population (the parents) and uses them to generate offspring. Off-
spring is generated via mutation, i.e. a new search point is generated from
each parent by independently mutating each of its bits with probability -,
where c is called mutation parameter. After the offspring generation, the
algorithm evolves the population by keeping the y fittest search points ac-
cording to f from the population and the generated offspring. If an element
of the offspring is fitter than an element of the starting population, then
this new fitter search point will be included in the new population. The
ultimate hope is that this artificial evolution will explore the regions of the
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search space that have higher fitness in order to find optimal solutions as ef-
ficiently as possible. Here our measure for efficiency is given by the number
of rounds until the first optimal solution enters in the population.

1.1 Theoretical Study of EAs

EAs can be studied both empirically and theoretically, and both approaches
have their advantages and disadvantages. Since in this thesis we will ap-
proach the topic from a theoretical perspective, we want to list some argu-
ments on why this is useful. Theoretical studies in this area mostly consider
the runtime of algorithms on a pool of benchmarks functions. Both testing
a single algorithm on a large number of benchmark functions and testing
several algorithms on a single benchmark function is interesting: the former
approach allows to detect the strengths and weaknesses of a given algorithm,
the latter approach is more useful to create a portfolio of algorithms that are
efficient in specific scenarios. Examples of interesting benchmark functions
include dynamic functions such as dynamic ONEMAXx (presented in [7]) and
static functions such as leading ones, ONEMAx and jump functions. A (per-
haps) surprising observation is the fact that many of those functions such
as ONEMax (that simply counts the number of one-bits in a bit-string) are
much simpler than the functions that one would like to optimize in practice.
This is done not because we are not interested in “wild” functions, quite
the opposite: by studying simple functions on a large pool of EAs, it is
possible to understand strength and weaknesses of a particular EA. Finding
weaknesses of an EA on a certain benchmark function is very interesting,
because, by making hypothesis on the nature of the limitation, it is possible
to design a new algorithm that hopefully works better. This new algorithm
is then tested again and, if it works better than the previous one, then it
won't fall in the same trap also when it will be used to optimize functions
in the real world. This approach of iteratively designing new algorithms is
particularly suitable for heuristics that aim to optimize arbitrary functions,
and hence a theoretical approach to EAs can lead to precious insights that
are useful also in practical contexts.

Monotone functions ! have been a very successful benchmark in the analy-
sis of evolutionary and genetic algorithms. We stress the fact that monotone
functions are trivial to optimize: the maximum is at the string that has only
one-bits (in fact, this string dominates all other elements of {0, 1}") and there
are no local optima (because we can always improve the fitness by flipping
an arbitrary zero-bit). Moreover, random local search (i.e. the algorithm
that flips in each round exactly one bit) optimizes all monotone functions

1In the context of functions from the hypercube to real numbers, we say that a function
f is monotone if for every x,y € {0,1}" with x # y for which x; > y; forall 1 <i < n it

holds f(x) > f(y).
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in O(nlogn), which can be seen with a coupon collector argument. Al-
though these properties may suggest that every hillclimber optimizes mono-
tone functions efficiently, this is not the case: in 2010 Doerr, Jansen, Sudholt,
Winzen and Zarges showed in [2] that the (1 + 1)-EA 2, although it is efficient
for all ¢ < 1, needs exponential time to optimize some monotone functions
for large mutation rates (c > 16). Further research (for more details, see
Section 1.5) provided some interesting classes of monotone functions, e.g.
HortToric functions  and noisy linear functions. In this thesis we will use
monotone functions, particularly HorToric functions, to investigate the im-
pact on the mutation rate of a variant of the classical (2 + 1)-EA that has
been shown to be useful in other contexts: particularly, we will show that
this variant is not useful for HorToric functions, and hence we will provide
a scenario where a technique that was shown to be useful in other situations
performs poorly.

1.2 The Algorithms

Now that we have introduced the topic and we have discussed the impor-
tance of theoretical analysis in this context, we need to be more precise in
the definition of the algorithms. In this section we formally describe the
general structure of the classical (¢ + A)-EAs and the variant that we will
study in Chapter 2.

In their most typical and general form - at each iteration i - EAs manage a
population P; C {0,1}" of size ;1. New offspring is created in every iteration
by mutating existing individuals in P;. Mutation is typically performed by
selecting A elements from P; uniformly at random and flipping each of their
bits independently with probability ©. For ¢ = 1, we will further refer to
this operator as standard bit mutation. We denote with Q; the multiset
of the A elements obtained at iteration i with the mutation process. The
population P;;; for the next iteration of the algorithm is given by the u
fittest elements (according to f) of the multiset P; U Q;, where here U denotes
the union of multisets. The general pattern of the (u + A)-EA is shown in
Algorithm 1. An interesting question, both from the theoretical and practical
perspective, is the stopping criterion. For the analysis of the runtime, we
run the algorithm until the first optimum of f enters the population. This,
of course, makes sense only in theory and it is somewhat artificial. More
practical stopping criteria could be running the algorithm for a fixed number

2The (1 + 1)-EA will be presented as a special case of the (x + A)-EA in Section 1.2. The
algorithm simply keeps a search point x and, at each iteration, it creates x’ by flipping each
bit of x with a certain probability. After this process, the fittest element between x and x’ is
kept.

3This functions will be the subject of our study and hence will be presented in detail in
Section 1.3.
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of iterations or until the algorithm converges to some solution. The latter
solution is of course sensible to finding local optima and hence requires a
clever initialization and/ or multiple restarts.

Algorithm 1: (1 + A)-EA

Multiset P; < @;
fori=1,...,udo
Sample x () uniformly at random from {0,1}";
P+~ PuU {X(i)};
end
fort=1,2,3,... do
Multiset Q; < ©&;
fori=1,2,...,Ado
Choose x € P; uniformly at random ;
Create y by flipping each bit in x independently with
probability c/n;
Qr < QU {y};
end
Multiset Pi 11 <+ @ ;
fori=1,2,...,udo
Select x € argmax{f(x)|x € P,UQ;} (break ties randomly)
and update Pi1q < P U {x};
end
end

The (1 + A)-EA has multiple parameters, and these have a strong impact on
performance. As already mentioned, in this thesis we will focus on the value
of the mutation parameter c. As shown by Lengler in [8], the value of c is
a matter that critically influences the performance of an EA and it is subject
to conflicting goals. On the one hand, if the mutation strength is too low
then the progress is also slow, and the algorithm will be susceptible to local
optima. On the other hand, if the mutation rate is too high and the parent is
close to a global optimum then typically the offspring, even if it has a “good”
mutation in it, will also have a large number of detrimental mutations. An
interesting result that provides evidence for this argument was shown in
[17] by Witt. They showed that the expected runtime for the (1 + 1)-EA
is (1+0(1))%nlnn. We note that the runtime goes to infinity either if c
approaches zero (i.e. if the mutation rate is too low) or if it approaches
infinity (i.e. if the mutation rate is too high). Another, stronger, result was
proved by Lengler and Steger in [10]. They showed that for the (1 + 1)-
EA, there exists a particularly hard family of functions that has exponential
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runtime for ¢ > ¢y &~ 2.14, but quasi-linear for ¢ < ¢p. * More generally, a
number of results about the impact of ¢ are presented in the literature. We
will give an overview of such results later in this chapter.

In this thesis, we will study the impact of ¢ on a variant of Algorithm 1
that is applied in order to promote diversity. We will present diversity pre-
serving mechanism in greater detail in the next section, but we anticipate to
the reader that it is widely observed that promoting diversity in the popu-
lation can have a considerable impact on performance. In general, diversity
in the population is needed to explore different regions of the search space
and they introduce a trade-off between exploration (i.e. considering multi-
ple different regions of the search space) and exploitation (i.e. converging
quickly to some solution). In the remainder of this section, we just present
the algorithm that we will study in Chapter 2: the (2 4+ 1)-EA with dupli-
cate avoidance (see Algorithm 2). The algorithm very similar to the classical
(2+1)-EA. The only case that leads to a different behaviour between the two
algorithms is the following: when using duplicate avoidance, if the mutation
process creates an offspring with the same genotype as one of the elements
in population that generated it, the offspring will always be discarded, even
if it is fitter than one of the elements in the starting population.

Algorithm 2: (2 + 1)-EA with duplicate avoidance

Sample x(!) and x?) uniformly at random from {0,1}";

P1 — {x(l)’x(z)};

fort=1,2,3,... do

Choose x € P; uniformly at random ;

Create y by flipping each bit in x independently with probability

c/n;

if P; does not contain any element with the same genotype as y then
Pip1 < P U{y};
Select k € argmin{f(x)|x € P;Uy} (break ties randomly) and

update Pi11 < P\ {k};
end
end

1.3 Diversity Preserving Mechanisms

In this section we motivate why diversity preserving mechanism might help.
In order to do that, we take a long tour that continues the discussion on the

4Such family of functions is the class of HorTorIc functions that we briefly mentioned
in Section 1.1 and that we will formally define in Section 1.4.
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choice of the parameters that we introduced in the previous section. This
allows us on the one hand to terminate our discussion on the importance of
the parameters, on the other hand to give a strong argument on why those
mechanisms are often useful.

In the previous sections, we said that the mutation parameter ¢ plays a big
role, however it is only one of the parameters that have to be chosen. An-
other choice that we have to do when selecting the most appropriate EA for
our purposes, is the choice of the population size p. It is clear that manag-
ing a larger population introduces overhead, but it can also bring benefits:
Witt stated in [16] that both theoretical and practical analysis of population-
based algorithms have showed a general trend that larger populations are
often better. This belief was challenged by Lengler and Zou in [11]. They
showed that, in certain situations, increasing the value of y from one to a
larger constant can increase the runtime from quasi-linear to exponential.

Summarising, a larger population can have both positive and negative effects
on the efficiency of our algorithm. In this thesis we will study mechanisms
that allow to keep some advantages of a larger population and, at the same
time, to alleviate its drawbacks. In order to understand such mechanisms,
we first need insights about the possible benefits brought by a larger popu-
lation. A key observation is the fact that a large population may be helpful
because it allows for diversity in the algorithm’s states. Such diversity may
be helpful to explore different areas of the search space, it facilitates global
exploration and it allows to escape from local optima. A natural alternative
to keep diversity in the population without increasing its size is the intro-
duction of diversity preserving mechanisms. Such mechanisms ensure that, in
each iteration, the algorithm will have a diverse population that contains dis-
similar individuals to promote exploration. Of course, in this scenario, we
have a trade-off between exploration and exploitation : when we use diversity
preserving mechanisms we give up a little bit on exploitation to promote
exploration. Although this might not always be the best choice (as we will
show later), diversity preserving mechanisms have shown to be useful in
many cases.

As a first example of benefit brought by diversity preserving mechanisms,
consider a large population that collapses to copies of the same genotype
before the search space has been properly explored. In this case we still pay
the overhead of maintaining a large population, but we can not exploit any
benefit from having it. This example might seem quite extreme, but it is not
so unlikely: for example, the exponential slowdown given by a larger value
of u studied in [11] contains a similar argument. More generally, the benefits
of diversity preserving mechanisms are manifold: they facilitate global ex-
ploration, they reduce the risk that the whole population converges to local
optima of low fitness, they are better suited for multi-objective optimization
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and they are more robust for situations where the function f changes dy-
namically. Moreover, they are a precious ingredient of genetic algorithms, a
variant of EAs which uses the crossover operator between two search points.
Although genetic algorithms are a fundamental topic of evolutionary com-
putation and they are often studied together with EAs, we will not further
elaborate on them.

In the long history of evolutionary computation, many variants that can
be introduced in Algorithm 1 have been proposed to maintain or promote
diversity. Many of those techniques work either on the genotypic level, i.e.
they try to create a diverse set of bit-strings, or on a phenotypic level, i.e. they
try to obtain different phenotypes, taking into consideration some mapping
from genotypes to phenotypes. The duplicate avoidance mechanism, i.e. the
variant that we proposed in Algorithm 2 that considers the population as a
set instead of a multiset, is an example of diversity preserving mechanism
that works on the genotypic level. In general, as stated in [14], there is a
plethora of mechanisms that can be applied as a variant of Algorithm 1, and
it is often not clear what the best strategy is. A theoretical approach to the
topic is interested in determining which diversity mechanisms work well
for a given problem, which do not, and most importantly in understanding
the reasons that lead to such behaviours. This would allow to get precious
insights in order to design new diversity mechanisms that work well in an
hopefully broad context. We conclude this section by listing some diversity
preserving mechanisms that have been studied. For a more extensive list we
refer to [13], while we list some other relevant results in Section 1.5.

e Duplicate avoidance, i.e. the algorithm that we study in this thesis.

e Fitness diversity, that does not allow the population to contain two
search points with the same fitness.

e Deterministic crowding, where the offspring competes only with its
parent and replaces it if and only if it has at least the same fitness.

e Fitness sharing, that derates the real fitness of a search point x based
by its similarity to other individuals in the population. Concretely, an
offspring y enters the population if it is better, considering a linear
combination that considers fitness and similarity to other points, than
the element z with the worst fitness in the population. For more details
we refer to [12].

e Clearing, a niching mechanism similar to fitness sharing. It uses the
same idea of similarity to create a new fitness function f ’ where some
"winners” element keep their original fitness, and the other elements
have their fitness decreases to zero. The EA then uses f’ instead of f
to select the fittest individuals.
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e Ageing, where search points with a certain age are discarded after they
have reached a maximal age to promote diversity.

1.4 HotTopic Functions

In this section we present HorTorIc functions, a particularly hard class of
monotone functions introduced by Lengler and Steger in [10] that will be
the objective function studied in this thesis. HorToric functions can easily
be optimized by some algorithms, but other algorithms fail miserably on
them and need exponential time. The high discriminative power of these
functions is their main advantage and results suggest that the choice of the
mutation parameter plays a crucial role in their performance.

The intuition on HotToric is the following. There are different parts of the
search space which we call levels. Locally, in the /-th level, the fitness is
given by the linear function f;(x) = Yiciihievel Xi - 1 + Lig¢rthlevel Xi - AN
additional term ensures that any search point of level / is fitter than any
search point of level / — 1. The regions (“levels”) are constructed in such
a way that flipping zero-bits into one-bits can only increase the level. The
string 1...1 lies in the region that corresponds to the highest level, and thus it
is the global optimum. This construction implies that there is always a “"hot
topic”, i.e. a subset of the search point (corresponding to the level) that has
a much greater influence on the fitness than the rest. Focusing too much on
this hot topic will lead to a behaviour that is very good at optimising this
particular bits, but the rest of the string will deteriorate because it is out of
focus. For example, a mutation that flips a single zero bit in the hot topic
and several one bits outside the hot topic will always be accepted, although
the Hamming distance with respect to the optimum increases®. Thus if the
hot topic is sufficiently narrow and changes often, then flips of zero bits in
the hot topic will be overcompensated by flips of one bits in the neglected
parts, which leads to overall stagnation.

We now formally define HorToric functions by closely following [11]. The
function is defined relatively to five parameters: n € IN, 0 < B < a < 1,
0 <e<1land L € IN. Throughout this thesis we assume that « and ¢ (but
not ¢) are constants, while L is exponentially large on n. We denote with HT
the function HOTTOPIC,, 4 g 1. For 1 <i < L we choose sets A; C [n] of size
an independently and uniformly at random, and we choose subsets B; C A;
of size pn uniformly at random. We define the level ¢(x) of a search point
x €{0,1}" by

SHere we mention the Hamming distance because is a natural way to quantify the prox-
imity to the optimum. In the next chapters we will generalize this measure with the potential,
a crucial concept in the analysis of EAs.
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{(x) := max{|{j € By : x; = 0}| < epn}
UelL]

where we set £(x) = 0 if no such ¢’ exists. Then we define f : {0,1}" — R
as follows:

HT(x) :={(x)-n*+ Y xien+ Y x

I€A)(x)41 i€Ry(x)11

where Ry(y)11 = [1] \Ay(x)11, and where we set Ap 11 := By := @. So the
set Ay(x)41 defines the hot topic while the algorithm is at level £. We see that
this function give a high weight coefficient to the current hot topic, while
all other bits have coefficient one. The initial term /(x)n? is introduced for
two reasons. First, this term makes the function non-linear: this is necessary
because, as shown in [10], any linear function has quasi-linear time for all
constants c. Moreover, with this construction, the level always increases and
when the top level is reached, then the string will converge to the optimal
solution in O(nlogn) by a coupon collector argument. ¢ We observe that
the level ¢ increases if the density of zero-bits in By drops below & for some
¢ > (. With high probability this only happens if the density of one bits in
Ay4+q and in the whole string is also roughly ¢, up to some constant factors.
Hence, the parameter ¢ determines how far away the algorithm is from the
optimum when the level changes. One can check that this function is mono-
tone. Indeed, assume that x is dominated by y, i.e. x; < y; forall1 <i < mn.
Then ¢(x) < ¢(y). If £(x) = ¢(y) then it is obvious that f(x) < f(y) and
the inequality is strict if x # y. On the other hand, if /(x) < {(y), then
f(x) < £(x)n® +n® < L(y)n* < f(y) as desired.

1.5 Related Work

The analysis of EAs on monotone functions started in 2010 by the work of
Doerr, Jansen, Sudholt, Winzen and Zarges [2][3]. They showed that the
difficulty of optimising monotone functions depends on the value of the
mutation parameter c. Particularly, they showed that the (1 + 1)-EA, needs
time O(nlogn) on all monotone functions if ¢ < 1. They also showed that,
for large mutation rates (c > 16), there are monotone functions for which
the (1+ 1)-EA needs exponential time. Their construction of hard monotone
functions was later simplified by Lengler and Steger in [8], who improved

®Throughout this thesis, whenever we use the asymptotic notation such as in x = O(y),
we mean that for every a and c there is a constant C (that may depend on « and ¢, but not
on ¢) such that x < Cy.
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the range for c from c > 16 to ¢ > 2.14 (in order to do this, they introduced
the HorToric functions). For a long time, it was an open question whether
c = 1 is a threshold at which the runtime switches from polynomial to
exponential. Lengler, Martinsson and Steger showed in [9] that c = 1isnot a
threshold, showing by an information compression argument an O (1 log” 1)
bound for all ¢ € [1,1+¢] for some ¢ > 0. Recently, the limits of our
understanding of monotone functions were pushed significantly by Lengler
in [8], who analyzed monotone functions for a mainfold of evolutionary and
genetics algorithms. By analysing the algorithms on HotrToric functions, he
found sharps thresholds on the values of parameter c, such that on one
side of the threshold the runtime was O(nlogn), while on the other side
of the threshold it was exponential. These algorithm include the (1 + 1)-
EA, the (1 + A)-EA and the (p + 1)-EA, for which the threshold was ¢y ~
2.14. He also generalized the argument of the seminal papers on EAs on
monotone functions by showing that for mutation parameter ¢ < 1 and for
every constant A € IN, with high probability the (1 + A)-EA optimizes every
monotone function in O(nlogn) steps.

Several results about diversity preserving mechanisms have been shown,
both theoretically and empirically. Regarding empirical studies, we mention
[1] (that studied a diversity control mechanism that implicitly implied the
avoidance of duplicates in the population and observed that such a mecha-
nisms brought benefits to both single-objective benchmark functions includ-
ing ONEMAXx and multi-objective benchmarks) and [15], that observed that
promoting diversity in the population brought considerable advantages in
the number of evaluations of the fitness function, which is highly desirable
for real-world applications, because the evaluation is often the time-critical
factor in such applications. Many of those studies observed that the right
use of those diversity strategies can play a key role for the success of an
EA. As a first example, we mention the use of diversity mechanisms in a
multi-modal setting, e.g. on TwoMax, a simple bi-modal function where
the fitness of a search point x is defined as max{}_ ; x;,n — Y_;"; x;}: here
the goal is not finding a single optimum, but ending in a population that
contains both the all-zero string and the all-one string. For this function, the
runtime of the (u 4+ 1)-EA with constant population size needs exponential
time to find both optima with high probability and in expectation. In [5],
it was shown that using duplicate avoidance does not help. On the other
hand, in the same paper, it was shown that deterministic crowding, fitness
sharing and clearing are helpful since they decrease the runtime to find
both optima from exponential to quasi-linear for constant population sizes.
Particularly relevant to us is what is known as the first rigorous theoretical
study about the impact on runtime of diversity preserving mechanisms: the
work presented by Friedrich, Hebbinghaus and Neumann in [4], who com-
pared a genotypic and phenotypic diversity mechanism on an artificially

10
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constructed uni-modal problem. An interesting result that they proved is
the introduction of a benchmark function (called Pr function): PL can be effi-
ciently optimized by the (2 4+ 1)-EA with duplicate avoidance and standard
bit mutation, but leads to exponential runtime of the (2 + 1)-EA with fitness
diversity and standard bit mutation. This suggests that implementing dupli-
cate avoidance on the (24 1)-EA can be helpful since it makes the runtime
go from exponential to quasi-linear in some cases. However, in this paper
we show an example where the trend is exactly the opposite.

1.6 Our Results

We have introduced EAs and the importance of a rigorous theoretical analy-
sis. We want to get insights about possible traps, such that we can develop
better algorithms or chose a good-performing algorithm in a specific prac-
tical context. We also mentioned that the general trend in the literature
suggests that promoting diversity in the population is a goal that should be
pursued: often the (minor) overhead necessary to promote diversity can be
largely compensated by the performance boost in the optimization time.

In this thesis we argue that this is not always the case. Concretely, we present
an example where implementing a diversity preserving mechanism hurts:
on some instance of HorToric close to the optimum, the (2 + 1)-EA with
duplicate avoidance (see Algorithm 2) is less efficient than the classical (2 +
1)-EA for all ¢ € [1.66,2.14]. The intuitive explanation of such a behaviour is
that if Algorithm 2 considers a population {x,y} with f(x) > f(y), then it
won't accept any offspring that is a duplicate of x. This is bad because, in the
context of a monotone benchmark function, the population {x, x} is better
than {x,y}: this follows from the fact that the total amount of one-bits is
larger in the former population than in the latter. Moreover, the classical (2 +
1)-EA allows to create a population {x, x} starting from {x, y} with constant
probability: it is sufficient to choose x as parent and not touching any of its
bits (which happens with probability ~ ¢~¢). Duplicate avoidance forbids
this shortcut: in order to create a population with the same total amount
of one-bits of {x,x} starting from {x,y}, it needs to flip at least a zero-
bit which, close to the optimum, happens rarely. In Chapter 2 we provide
more arguments for this result, together with a rigorous proof based on drift
analysis. We stress that the fact that the classical (2 + 1)-EA is efficient for
a larger interval of mutation parameter than the (2 + 1)-EA with duplicate
avoidance is a good certificate for its superiority: this is not because we want
to be efficient in optimizing HoTtTorIc (after all, this is a monotone function),
but because this result gives us insights on why duplicate avoidance hurts.
Moreover, it is desirable to get algorithms that are efficient for a broad choice
of parameters, such that the choice of those parameters becomes less of a
concern for practical purposes.

11
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1.7 Tools

Before we begin our journey in the analysis of the (2 4+ 1)-EA with duplicate
avoidance on HorToric functions close to the optimum, we report some
relevant tools that we will use throughout the proofs. This is not strictly
necessary because we just state some results without any further explanation
or formal proof, but we prefer to make the thesis self-contained for the sake
of completeness.

We begin with the Chernoff bounds, that we often use to obtain good tail
bounds.

Theorem 1.1 (Chernoff Bound, Theorem 1 in [11]) Let X3, ..., X}, be indepen-
dent random variables (not necessarily i.i.d) that take values in [0,1]. Let S = Y1 4
and p = E [S]. Then forall 0 < § <1,

Pris<(1—8)u] <e "
and for all 6 > 0,

Pr(S > (1+6)u] < e~ ™n(@9)5

Then we report two important theorems in drift analysis: we will use them
to prove them the runtime of our algorithm.

Theorem 1.2 (Negative Drift Theorem, Theorem 12 in [6]) Let (X;);>0 be a
sequence of random variables and let d € R. If, for all t > 0,

E Xt — X¢ | Xo,...,Xe] < d,
then (X; — dt)> is a supermantigale. If further (X; — dt);>o is (c, 6)-sub-Gaussian,
the, for all t > 0 and all x > 0,

Pr|max(X; — Xp) > dt + x| < e~ 2 min(d,5)
0<j<t

Theorem 1.3 (Theorem 4 in [10]) Let (X¢)iew, be a Markov chain with state
space S C {0} U [1, c0) and with Xy = n. Let T be the earliest point in time t > 0
such that X; = 0. Suppose furthermore that there is a positive increasing function
h:[1,00) — Rsg such that for all x € S, x > 0 we have for all t > 0

E [Xi11 | Xe = x] < x—h(x).
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Then
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Chapter 2

Analysis of (2 + 1)-EA with duplicate
avoidance

In this chapter we study the impact of the duplicate avoidance mechanism
on the (2 + 1)-EA (see Algorithm 2). Recall that the (2 + 1)-EA with du-
plicate avoidance is very similar to the classical (2 4+ 1)-EA, but it avoids
that the population collapses to two identical search points. The goal of this
chapter is studying the impact of the duplicate avoidance mechanism on the
mutation parameter c¢. This question, of course with different algorithms
and/ or fitness functions, has been the subject of a number of other papers.
Particularly relevant to us is the work [8] by Lengler. Lengler showed that,
for the classical (2 + 1)-EA when it operates sulfficiently close to the opti-
mum, there is a threshold for HotToric! ¢y ~ 2.14: for ¢ < ¢ the algorithm
has expected runtime ®(nlogn), for ¢ > ¢y the algorithm has expected expo-
nential runtime. Here we show that the (2 + 1)-EA with duplicate avoidance
has expected exponential runtime for all ¢ > 1.66 on some HorToric func-
tions, and hence using this mechanism does not help. We have not been able
to formally prove that there is a threshold as Lengler showed for the clas-
sical (24 1)-EA, however we will give an informal argument that suggests
that there is a threshold ¢y € [1.64,1.66] such that Algorithm 2 has expected
runtime O(nlogn) for all ¢ < co.

Note that throughout the chapter we choose the parameter e such that the al-
gorithm operates sufficiently close to the optimum. This means that, for all
parameters & € (0,1) and ¢ > 0, there exists an ¢y such that our statements
hold for all ¢ < gy. We point out that HorTorIic functions are constructed
in such a way that the (2 + 1)-EA easily reaches (and stays in) a regime in
which all search points have at most Cen zero-bits, where C is a constant
that depends only on a and c. This justifies our intuitive formulation that

1Since we consider a situation close to the optimum, the parameter ¢ of the HorToric
function has to be small enough.
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2.1. Preliminaries

the parameter ¢ forces the algorithm to operate in an O(en) neighbourhood
of the optimum. Although one might intuitively think that optimising a
function far away from the optimum is easier (after all, there are more possi-
ble “good” mutations), we stress the fact that considering only the situation
close to the optimum is a restriction: a surprising example that shows a sit-
uation where optimising a population far away from the optimum is more
difficult than optimising a population close to the optimum is presented in
[11]. This result is particularly relevant to this thesis because we consider
the same fitness function HotTorIc, but with a different parameter .

In order to study the impact of the mutation parameter on the runtime of
Algorithm 2, we make the following plan. In Section 2.1 we define a potential
function for some states of the algorithm and we prove a tail bound; in Sec-
tion 2.2 we compute the drift of the algorithm with respect to the potential
defined in Section 2.1. The drift is a function that depends on the parame-
ters a, ¢ and . For a fixed ¢’ it holds that, if we find an «g such that we have
a positive drift at (¢/, ag, €) with € small enough, Algorithm 2 with mutation
parameter ¢’ has expected exponential runtime on all HorToric functions
with parameters g, ¢ and 7 large enough. In Section 2.3 we show that, for
all ¢ > 1.66, such an ag exists and in Section 2.4 we formally prove that this
actually implies an expected exponential runtime. This would already be
enough to state that implementing a duplicate avoidance mechanism on a
(2 4+ 1)-EA is not helpful on some instances of HorTorIic functions. How-
ever, we additionally give an informal argument that justifies our belief that,
similarly as in the algorithms discussed by Lengler in [8], there is a thresh-
old ¢y € [1.64,1.66] such that Algorithm 2 has expected runtime ©(nlogn)
for all ¢ < co.

2.1 Preliminaries

Drift analysis is a very useful tool in the analysis of EAs. Informally, we have
that a drift towards the optimum on a certain EA implies that it has expected
polynomial runtime, while a drift in the opposite direction implies that it has
expected exponential runtime. There are multiple proofs of this fact in the
literature (e.g. in [11] and in [10]), but for the sake of completeness we will
give an argument for that in Section 2.4. The goal of this chapter is finding
for which values of c the drift goes in the opposite direction of the optimum:
in fact, by comparing this values with the threshold ¢y ~ 2.14 found by
Lengler for the classical version of the algorithm, we can determine whether
the duplicate avoidance mechanism is useful for the (24 1)-EA on HorToric
functions or not. Now that we have defined the goals of this chapter, we can
start with some technical aspects. In general, the drift is always defined
with respect to a potential function, and the choice of a “good” potential
is crucial: defining a “bad” potential can make the necessary computations

15
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prohibitively difficult or even lead us to situations where answering to our
initial question becomes impossible.

Before we explain our choice of potential, we introduce the preliminary con-
cept of special population. This is useful because we define the potential only
in such populations. We say that a population with elements x(!) and x(?)
is special if the two elements have the same bits in the hot topic of the cur-
rent level and differ exactly in a single bit in the rest of the search point. In
other words, if we compute the bit-wise XOR between the bits outside the
hot topic of the current level of two elements of a special population, we
obtain a string with exactly a single one-bit. We remind that we define the
potential only in states that represent a special population. Concretely, we
say that the potential X; is the number of one-bits in the fittest element of
the i-th special population. For convenience we will note with OM(x) the
number of one bits in search point x, so we have X; = OM(%), where ¥ is
the fittest element in the i-th special population. Moreover, we denote by
d(I,x) :=|{i € I | x; = 0}|/|I| the density of zero bits in I. In particular,
d([n],x) = 1 —Owm(x)/n. The drift of the algorithm with respect to this
potential is formally defined as

E [X; — Xi 1]

Before we begin our investigation on what mutation parameters make the
drift positive/ negative (the goal of this chapter), we prove a tail bound
lemma. This lemma will be useful to prove a lemma in the next section
(Lemma 2.2) and to prove the runtime of the algorithm.

Lemma 2.1 For every € > 0 there exists a constant C > 0 such that the following
holds. Let x and y be two search points with a :== OM(x) > OM(y) =: b with
a > Cenand b > en. Let X be the number of one-bits in the first special population
that we reach starting from the population {x,y}. Then Pr[X >a+d] < e ?
and Pr(X < b—d] <e “ foralld > 0.

Proof Starting from the population {x,y}, we define a random variable T
as the number of iterations until the next special population. The only ex-
ception to this definition is that, whenever we get to a population with two
elements with the same fitness, we consider only iterations that flip at least
one zero-bit. We want to compute an upper bound for Pr[T > t]. In order
to do that, we compute the probability p; of getting to a special population
in the next iteration when we consider a non-special population {x,y} with
f(x) > f(y) and the probability p, of reaching a special population in the
next iteration when we have two elements of the same fitness in the popula-
tion (this time we condition the probability of flipping at least one zero-bit).

16
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In order to compute p; we observe that from a population with f(x) > f(y)
we reach a special population in the next iteration if

1. we mutate a single one-bit outside the hot topic,
2. no other bit in x is flipped
3. and the offspring is accepted in the new population.

If n is sufficiently large and ¢ is chosen small enough (e.g. ¢ < 1), a lower
bound for this probability is

—_

1 c
> - o _ - n—1 > - . —C
p1 > 4(1 a)(1—¢)c(1 n) > 8(1 a)ce
In order to compute p, we observe that we reach a new special population
in a single iteration starting from a population {x,y} with f(x) = f(y) if

1. the only bit we flip is a zero-bit outside the hot topic either in x or in y
2. and we keep the parent and the offspring in the new population.

If n is large enough, a lower bound for p; is given by
1 c 1
> _ _ _ n—1 > - _ —C
p2 > 2(1 w)c(1 n) > 4(1 a)ce

We observe that py, p» € Q)(1) and that they both do not depend neither on
n nor on &. Now we are ready to compute an upper bound for Pr [T > t]. We
define p := min{py, p2}. We have shown that Pr [T =+t |T >t —1] > p. We
can apply an inductive argument to this result and we get that Pr [T > t] <
(1-p)f <e

Now we define a new random variable Y that denotes the total number of
bits flipped in any of the iterations that count towards T. Since |a — X| <Y,
this random variable will be useful to prove the statement of the lemma. We
first compute p; := Pr[Y > (2c+ 1)t | T = t]. For each of the t iterations we
distinguish two cases:

1. The two individuals have different fitness. Since in this case we don’t
condition on flipping at least one zero-bit, each of the n bit has proba-
bility - to be flipped, independent of each other.

2. The two individuals have the same fitness. In this case we condition
on at least one zero-bit being flipped. For the one-bits, the situation is
the same as in the previous case: each of them still has probability
to be flipped, independent of each other. For the zero-bits, we enumer-
ate them from 1 to k, and we define i as the index of the first zero-bit
that is flipped. Then none of the zero bits with index 1,...,i —1 is
flipped, and each of the zero-bits with index i 41, ..., k is flipped inde-
pendently with probability +. In total, we have an upper bound on the
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2.2. Drift of X;

number of flipped bits in this iteration by 1 + B, where B ~ Bin(n, £).
This upper bound naturally holds also for the first case.

Hence, for each iteration i, the random variable Y; = 1+ B is an upper bound
on the number of flipped bits. Since Y = Y_; Y;, we have that Y = t + B/,
where B’ ~ Bin(t-n, £). We now have

pr=Pr(Y> 2c+1)t| T=1t < Pr[B >2t|T=t| < e3¢t
where in the last step we used the Chernoff bound. And, with the same
argument, for Pr[B’ > 2ct | T = t'] and every t' < t we get the same upper
bound. Now we have everything we need to bound Pr [Y > 2ct]. We get
Pr(Y >2ct] =Pr[T >tand Y > 2ct|+ Pr[T < tand Y > 2ct]
<Pr(T >t +Pr[Y>2t|T<t]-Pr[T <t
< Pr[T>t]+Pr[Y>20t | T <t
e~ ()

By substituting f with % we get Pr[Y > k] = e %), Since |[a — X| < Y by
definition of Y, we get

PriX<b—d=Pr[-(b—X) < —d]=Prlb—X>d <Prla—X>d] =e 20

and
PriX>a+d =Pr[—(a—X)>d <Prlla—X|>d] =e 920

which proves the lemma. O

2.2 Drift of X;

Now we are finally ready to compute E [X; — X;;1]. Since some computa-
tions will come out often in the computation of the drift, it is useful to prove
two ad hoc lemmas such that we can introduce some modularity in the proof
by just referring to them later. Lemma 2.2 computes an expected value
analogous to the drift (i.e. a kind of drift that extends also to non-special
populations) in the case that one of the two search points in the population
dominates over the other one; Lemma 2.3 does the same in the case that the
population contains two search points with the same fitness. These lemmas
will be very helpful to compute the drift in a more compact and elegant way.

Lemma 2.2 Consider a non-special population {x), x?)} with f(xM) > f(x(?).
We define a :=OM (xV)) and X as the random variable denoting OM (x), where x
is the fittest element of the next special population that will be visited by Algorithm
2. Then

E[la—X]|] € O(e)
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2.2. Drift of X;

Proof In order to prove the statement of Lemma 2.2 we start from the tran-
sition state diagram in Figure 2.1. Starting from the non-special population
described by the lemma, Algorithm 2 has an infinite number of paths that
lead to a special population. We group them in two categories.

1. Leaving the initial state with population {x(1), x(2)} and getting (possi-
bly after an arbitrary number of loops in the initial state) to the special
population {x(1), x(3)}. This transition happens if Algorithm 2 mutates
x(M) and flips a single one-bit outside the corrent hot topic. The proba-
bility p; of taking this transition is constant: in fact we have to choose
x() from the initial population, flipping a single of its one bits outside
the current hot topic and not changing the other bits. A lower bound
for this probability is given by

1

S(1—a)(1—e)e(1- %)"—1 € 0(1)

In this case, the value of a — X = 0, since the fittest element of the

special population is x(1),
2. Leaving the initial state with population {x(!),x(>)} to get (either di-

rectly or through other states), to a special population where the fittest
element is xl@) with f (xl@)) > f(xM). In general, there is a large num-
ber of those paths. Note that in general each of this path may have a
different probability. In order to take one of those paths, we need to
flip at least one zero-bit. This naturally follows from the fact that the
fittest element of the final special population is fitter than the fittest

element of the initial population.

Since the first case contributes zero to the value of 2 — X, we only consider
the second one, which has an infinite number of paths that bring to a special
population with 2 — X # 0. We denote with p the probability of looping in
the initial state, with p; the probability of taking the i-th path conditioned
on leaving the initial state and with A; its corresponding value of |a — X|. In
order to show the lemma, we have to prove that

[ee] (o] [ee] /
ipin) =Y i A e O 2.1
i_l(gppl ) 1-2211— (e) (2.1)

In order to prove this, we first split p; in two parts: a first step with probabil-
ity g; that indicates the probability of taking the first (and possibly unique)
step towards the special population, again conditioned on leaving the ini-
tial state. In other words, we want to single out the first iteration which
flips a zero-bit. After this first step, the population will be {x,x()}. We

19



2.2. Drift of X;

P P

Figure 2.1: Transition state diagram starting from a population {x(1), x(®)} such that f(x(l)) >
f(x<2)). The final states represent special populations. The special population on the left
represents the case where the fittest element of the population is xM. The special population

on the right represents the i-th possible special population with fittest element x§4) such that

f(xlw) > f(x<1)). We observe that nothing prevents xl@ being equal to x(1) for some i. The
arrow with probability plf is dashed because, in some cases, the path to -special situations before
arriving to the final special population.

define K; := OM(x(")) — max{OM(x("),OM(x)}. Then we consider also the
expected contribution of G; := max{OM(x()),OM(x)} — OM(x§4)) to the
value of a — X. Observe that A; = |K; + E(G;)|. In order to show Equation
2.1 we can just show

;1 —pAZ 1 _pz‘:zlqlKKz_'—lE(Gl)” € O(e)

In order to approximate the expectation of G;, we apply Lemma 2.1 (recall
that we in are in a situation arbitrarily close to the optimum and hence the
conditions of the lemma hold) . Since Y5> e~k € O(1) (this can be seen
in different ways, e.g. using k < es* for k large enough and the geometric
series formula), we get that the expected value of G; is |C’|, where C" € O(1).
Hence, the initial goal of Equation 2.1 reduces to

Y K+ C) € O(e)
it P
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We now rewrite the sum by substituting the infinite number of paths that
have a first step of probability g; with paths that have a first step of proba-
bility p;x. pjx indicates the probability of flipping j zero-bits and k one bits.
The probability of flipping j zero bits is O(¢/). An upper bound to the prob-
ability of flipping k one bits can be approximated with a Chernoff bound.
We have

) c _(x=0?
Pr [Bm(n,ﬁ) > x} <e

Moreover, we can merge the constants 1 — p and the leading constant of
O(¢) into a single constant C"”’. By applying this result and the approxima-
tion with the Chernoff bound, we have that Equation 2.1 reduces to

Pﬂg

Z Clefe— "5 IKjx+C'| € Oe)

I
—

j

By introducing a natural upper bound of j + k for K;; and observing that
li+k+C'|<j+k+|C| we get

Y Clele %" Sk |C) < CO (2.2)
k=0

L hgk:

Il
_

j

k—c)?

At this point it is useful to introduce an upper bound for e~ 5 For suffi-
ciently large k we have

_ (k*C)Z —K242ke—c2
e 3c =e 3c
2y k2
< e T 3¢
K2
<Ce &

We hence have an upper bound (by incorporating C in the previous undeter-
mined constant C"”’) for equation 2.2 of

Y. Y Clefeke (j+k + |C'])
j=1k=0
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2
It is clear that ) 52, e converges to a constant: we can reduce it to a form
where we can apply the geometric sum formula. Similarly, since k < % for
2
k large enough, we have that also } ;7 etk converges to a constant. By

appropriately taking into accounts these new constants in a new constant C,
we have

Y CejeOfe
=1

We have shown that Equation 2.1 is in O(e), which proves the Lemma. [

Lemma 2.3 Consider a non-special population {x), x®} with f(x1)) = f(x?).
We define a :=OM (x() such that a > (1 — e)n and X as the random variable
denoting OM (x), where x is the fittest element of the next special population that
will be visited by Algorithm 2. Then

1

Ele—X] = w(e(=2)e —1) 41

[zxc(l — )10 — g (e(t=0e _ 1) — } + O(e+ )

1
7’16—ﬁ

Proof In order to prove Lemma 2.3 we compute both an upper and a lower
bound for the expectation of 4 — X. We will show that those expectations are
equal up to minor terms. In order to do that we consider the possible paths
in the transition state diagram, starting from the non-special population
described by the lemma. Algorithm 2 has an infinite number of paths that
lead to a special population. We group them in three categories.

1. Flipping a single zero-bit in either xW or in x?). When studying such
a transition, we have also to consider all loops in the initial state.

2. Flipping a single zero-bit in the hot topic of either x(1) or x(?) and t > 1
one-bits outside of the hot topic. Similarly to case 1, also here we have
to consider all loops in the initial state.

3. Other paths that flip more than a single zero-bit. Similarly to how
we did in the proof of Lemma 2.2, we can show that the sum of the
probability of those paths, conditioned on leaving the initial state, is
in the order of O(e?). Briefly, each path flips j > 2 zero-bits and k
one-bits: by using a Chernoff bound to approximate the probability
of flipping k bits and reducing it to a multiplicative constant we have
the result. We will argue later on that the sum of those paths has a
contribution of order O(¢) to the drift.

We compute the contributions to 2 — X in each case. The lemma will follow
by summing the three contributions. Before diving into the analysis of the
single cases, we compute some terms that will be useful in the analysis.
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e Let pi(t) be the probability of flipping a single zero-bit in the hot topic
and t > 1 one-bits outside of it. Recall that « is the proportion of
elements in the hot topic of the string and ¢ the density of zero-bits.
We get

p1(t) = anes (n(l - oct)(l - €)> (E)t 1- E)nftfl

n n n

Now we give both a lower and an upper bound for p;(t). In order to
do that we compute the bounds for the binomial coefficient and we
give an approximation for (1 — £)"~*~1. For the upper bound of the
binomial coefficient we have

<n<1—zx)<1—s>>_ Cin—a)(1—e) i

t !
tr1  aANE(1 o\t
N (1—-w)(1—¢)
- t
t _ t
o n (1—-w)
- t

For the lower bound we restrict ourselves to the cases where t <
. 1 1
min{n3, e 2}. We have

(”(1 —a)(1 —8)) _IiSyn(—a)(1—¢) —i

t t!
> <n(1—tx)(t1'—s) -t
(n(l —a)(1—¢)— n%>t
= t!
(1 -1 - o)1 —n}))’
= t!
tl_ tl_ 57%1_ —%n%
> A —a)( et)' (1-n"2)
S nt(l _ “)te—Ze%e—Zn’%
- t!
_ (- —2¢1)(1—2n"%)
- t!
_n(1-0) (1= 0(/e+n74))
t!

Where we used ¢ 2 < 1 —x < e %, and the first inequality holds

for x sufficiently small. Moreover we approximate (1 — <)"~~1 with
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e (1 —O(L)). In order to see why the last approximation holds, we
use the Taylor expansions e * = 1 — x4+ O(x?) for x € [-1,1] and

—x+0(2) for x € [—0.5,0.5]. Then, for n large enough, we get

<1 B E)nftfl _ (eiio(jz)>ntl
n

t t
_ echr%Jr%i(’)(ﬁ)

l1—-x=e¢

[S]

c c ’
=e ‘(1-— ;t - + O(%) + O(%))
= c(1-0(})

Hence an upper bound for p;(t) is aec(l%{x)fcte*c(l — O(4)), while a

lower bound is zxsc(l%,“)tcte*c(l - O(Ve+ 1+ n*%).

e We can use the previous upper and lower bounds to get the sum of
the probabilities of p;(t) over the range of possible . We get an upper
bound of

n(1—a)(1—¢)

pi(t) <) pi(t)
=1 =1
— ZM_:C n(l_“)(1_€)>ct(1 7)n—t—1
= t n
. (1 — ‘X)t t,—c t
< — —
< t;zxsc ce (1 (’)(n)
— —c(,c(1—a) _ -t - (1_0‘)tct
wece (e 1) — aee tz =
= wece (€170 — 1) — 0(2)
And a lower bound of
n(l—a)(1—e) o0 0
p) =Y mt)- Y, p)
t=1 t=1 t=n(1—a)(1—¢)
& ( — ) t,—c z - c!
>t;1xsc T (1-0(e+—+n"s))— (12(1 i
= n(l—a)(l—e)
oS (1T—a)td 1 aece ¢ & (1 —a)ict
> — _
> wece t; t' (1-0(e+ns)) - t; 1)
= wece (eC17%) —1) — O(e? + il)
ns
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where we used that & C is an upper bound for p; (t) and that )3 (1) 7 ! <

~K for every fixed posmve constant K (the latter upper bound can be
seen with the Stirling bound).

e Let p; be the probability of flipping a single zero-bit and no other bits
in the string. Since ¢ is the density of zero-bits in the elements of the
starting population, we get

N Y/ BN §
pz—enn(l n) =ece (1 O(n))

e Let p be the probability of staying in the initial state after an iteration
of the algorithm. We now compute ﬁ (again, in form of a lower
and an upper bound). This term is useful to consider the loops in the

initial state. Since 1 —p = 2?317“)(178) pi(t) + p2 + O(e?), we get a
lower bound of
1 1
=r e gG "  p + e+ 0@)
> 1
~ wece=¢(e(170)¢ — 1) —gce=¢ — O(£)
1 €
> o&
~ wece¢(e(1-0)c — 1)—|—£ce—c+ (n)

and an upper bound of
1 1
=r g g0+ pat 0@
1
aece=<(ef1=0) — 1) 4 gce—¢ — O(e2 —|— &)
1

= O(e?
aece=¢(e(1=0)¢ — 1) + ece—¢ +O(e+ n

IN

‘(‘0 o=

)

=

Now we compute the drifts in the three cases stated at the beginning of the
proof.

1. We have some additional possibilities: either we mutate x(1) and we
throw away x(?) or we mutate x(!) and we throw away x(!) (analo-
gously by exchanging x(1) and x(®)). In the first case we directly get
to a special population, in the latter we get to the situation of Lemma
2.2. For this reason, the total drift here is —1 + O(e). Hence the drift
is given by

ece”© 1 ece”©
3 i1+ 00 = 2 1 o) = -5 o )
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2. After the first mutation we get to a state where we can apply Lemma
2.2. Given this construction, we have a drift of t — 1. By computing the
probability of such a path and multiplying by the drift we get

3 2#;71()@—1)
1 n(1—a)(1—¢) ©
= T—p ( Y, mt)t— Zpl(f)>
t=1 t=1

From the previous equation we observe that we need to compute bounds
for Z':ill_“)(l_g) p1(t)t. We get a lower bound of

n(1—a)(1—¢) n(l—a)(1—e) (1 _ “)t t
Y ooni= Y s it (1-0(E L anh)
= = (t—1)! n
n(l—a)(1—e) t—1
T & =11 — t -5
= wecce (1 uc) ; (t—l)! c (1 (’)(\/g—i—n—i—n 6))
> wec?e (1 — a)el =) — O(S% + il)
ns

and an upper bound of

n(l—a)(1—e) © c [X)t y ¢
; p1(t ; wece 71}_1) (1_0(11))

= wecZe (1 — a)el=9 — O(

We now sum all three cases and we get that the value of E [a — X] is

ip(im t—Zpl )+ece “(1+O(= ))(—1—1-(9(5)))

1 ad 1
— | Yot t—Zpl t)+ece “(—1+O(e+—))
—P\izx n

By introducing the terms that we have previously computed we get that
lower and upper bound coincide and are equal to
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ae(1 —a)el=e — g(ef1=0) —1) —1 e 1
O £z
a(e—e —1) +1 TOk+ 1o n)
which proves the lemma. ]

Before we continue our journey and actually compute the drift, we make an
important observation about the result of the lemma we have just proven.
Although this new lemma will be useful for the first time only in Section 2.3,
we prefer to introduce it here because it describes a property of the result
we just proved in Lemma 2.3.

Lemma 2.4 Fix an arbitrary ag € [0,1]. Then, for all ¢ > 0, the function

1
L(c) =
(C) ao(e(l_“O)C _ 1) +1

[zxoc(l — wg)e10)e — gy (e(1-m0)e 1) — 1]

is monotonic increasing.

Proof We simply compute the derivative of L(c) with respect to ¢ and we
show that it is non-negative for any choice of ay € [0,1]. The derivative is
given by
L/(c) — 1 . [(060(1 . ao)e(l—ﬂto)c + (X()C(l _ DCO)Ze(l—nzo)c
(ap(e1=20)c — 1) +1)
— ap(1 — ) e %)) (ap (e 70)¢ — 1) + 1) — (ag(1 — ap)el1~%0)€)

(xpc(1 — ag)e1=20)¢ — g (1720 — 1) —1)]

By removing the denominator (Which it is a square and hence non-negative)
and simplifying the expression above we get

aoe(1 — wg) el =20 (g (10 — 1) + 1) — afe(1 — wg)e?~*0°
+ ad (1 — ap) (e8¢ — 1)e(1720)¢ 4 (1 — g )1 —20)e
>0
> (X%C(l _ ao)ZeZ(l—ag)c + aoe(1 — “0)28(1—0(0){3(1 ~ &)
— 03c(1 — w221

= agc(1 — )%™ (1 —ay) >0

and hence L(c) is monotonic increasing. O

After this intermezzo, we go on with the plan we proposed at the beginning
of the chapter and we compute the drift of Algorithm 2 with respect to «, c
and ¢. In order to do that, the statements of Lemma 2.2 and Lemma 2.3 will
be very useful.
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2.2. Drift of X;

Lemma 2.5 Let

1
: —a)el=0)e _ y(pl=a)c _ 1y _
L(a,c,¢e) := A — 1) 11 [occ(l a)el M — (e TV - 1) 1} + O(e)
Di(a,c,€) :=—ece * + (1 —a)?ec?e“L(a,c,e) + aec®(1 — a)e

— aece (e —1) 4 a2ec?eL(a, ¢, €) + O(€?)
Da(a,c,€) := (1 —a)ece °L(a,c,e) + aec*(1 —a)e ™ + O(e?)

p(a,ce) :=1— (scec — (1 —a)%(1 —¢)c?e —aec(e=4) —1)

1

2
—a%e(1—¢g)c?e™ — (1 —a)ece™ — ocsce“")

Starting from a special population with elements x and y with f(x) > f(y), the

drift of Algorithm 2 is

Di(a,c,€) + Da(w, c,€)
2(1—p(a,ce))

D(w,c,e) =

Proof In order to compute the drift D(«,c,¢), we sum all contributions of
the difference of potential brought by the different paths to a next special
population multiplied by their probability. In general, we have that the
contributions to the drift of paths that leave the initial state by flipping more
than a single zero-bit are negligible. This holds, using a similar argument
to the one of Lemma 2.2, because we assume that our algorithm operates
sufficiently close to the optimum. We compute both an upper and a lower
bound for the drift.

It is useful two distinguish two main cases. The first case, summarised
in Table 2.1, considers the case that Algorithm 2 mutates x: we denote with
D1 (w, ¢, €) the drift conditioned on leaving the initial state under this assump-
tion. The second case, summarised in Table 2.2, considers the case where the
algorithm mutates y, and we denote with D,(«, ¢, €) the drift (again without
considering loops on the initial state) under this assumption. We denote
with p(a, ¢, ) the probability of staying in the initial situation. Since the two
cases come with a factor of 0.5 in the final expression of the drift, we have

i 1

(D1(a,c,€) + Da(a,c,€)) = 20— place)) (D1(a,c,€) + Da(a,c,€))

e
N

E [X; — Xip1] =
—0

We start by computing an upper bound and a lower bound for D;(a,c,¢).
Table 2.1 shows all possible cases. The relevant consequences to the drift are
the following
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2.2. Drift of X;

1. We get to a special population, where the generated offspring x; is the
fittest element. X; — X;1 = —1 and the probability of getting to this
state is

(1 —a)ens (1= )t = (1 - a)ece (1 - 0(%))

2. We get to a population with {x,x;} with f(x) = f(x1). This state
satisfies the conditions of Lemma 2.3. We observe that L(a,c,¢) is
equal to [E [OM(x) — X;;1] that we computed in Lemma 2.3. The drift
of this case is hence given by

2

(1—a)2e(1 - s)nz%(l . %)HL(W, c,e) = (1—)2e(1 — €)c2eL(n, c,€) (1 — 0(%))

3. Similarly to case 1, we get directly to a special population and the
difference of the potential is -1. The probability is given by

€1 Syt — pece(1— O(L
aenn(l n) = aece (1 O(n>)

4. We create offspring x; fitter than x. We can apply Lemma 2.2 and
we get that, with high probability, x; will be the fittest element of the
next initial population. The value of X; — X;;1 is t —1. We sum the
contributions for all possible values of t and we get

n(l—a)(1—e)

; (t —1)aec (n(l - ‘Xt)(l - €)> <%)t (1- %)nftfl

And, by applying the same computations of the proof of Lemma 2.3,
we get an upper bound of

(aec?(1 — a)e e — pece™¢(e“17%) — 1)) (1 — O(%))

and a lower bound of

(aec®(1 — oc)e_cec(l_"‘) — aece‘c(ec(l_"‘) -1)(1-0(e+ % + n_%))
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2.2. Drift of X;

5. We create an offspring with the same fitness of x, hence we apply the
statement of Lemma 2.3. The drift of this case is given by a?e(1 —
e)c’e °L(a,c,e).

Hence, by summing the five contributions and the j:(’)(sz) error terms, we
get that the contribution to the drift of the first case, for n large enough is

Di(a,c,e) = —ece “ 4 (1 — a)?e(1 — &)c?e “L(a, ¢, &) + aec®(1 — a)e ™
— wece (17 —1) +a%e(1 —e)Pe L(a, ¢, €) £ O(?)

We continue by computing Ds(«,c,€). Table 2.2 shows all possible cases.

The relevant consequences to the drift are the following

1. We get to a population with {x,x;} with f(x) = f(x1). This state
satisfies the conditions of Lemma 2.3. The drift of this case is hence
given by (1 — a)ece °L(a,c,¢€).

2. We create offspring y; fitter than x. We can apply Lemma 2.2 and
we get that, with high probability, iy; will be the fittest element of
the next initial population. The value of X; — X;1 is . We sum the
contributions for all possible values of ¢ and we get

= t n n

And, by applying the same computations of the proof of Lemma 2.3,
we get an upper bound of

ocscz(l — oc)e_ce(l_"‘)c(l — O(%))
and a lower bound of

wec?(1—a)e e179(1 — O (Ve + % )

Hence, by summing the five contributions and the +O(¢?) error terms, we
get for n large enough
Do(a,c,e) = (1 —a)ece °L(w, c,e) + wec*(1 — a)e * + O(€?)

In order to compute the final expression for E [X; — X; 1] we need to com-
pute the probability p of staying in the initial situation. Since p is equal
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2.2. Drift of X;

to one minus the probabilities of leaving the initial state, we get an upper
bound of

1
p(a,ce) <1-— 5 (scec — (1 —a)%(1 —¢)c?e ™ — wec(e4° — 1)
—a?e(1—e)c?e ™ — (1 —a)ece ™ — zxece_”‘c)
By combining the results we obtain the drift

Di(a,c,e) + Da(a,c,€)
2(1—p(a,ce))

which proves the lemma.
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2.3. Analysis of the Drift

2.3 Analysis of the Drift

In the previous section we proved Lemma 2.5, which expresses the drift
D(w,c,€). As we will argue in Section 2.4, if we find an ag € [0, 1] for a given
co such that D(cp, ap,€) is positive for € small enough, then Algorithm 2
with mutation parameter cg has expected exponential runtime on HorToric
functions with parameters «g, ¢ and n large enough. Lemma 2.6 gives us
a strong result in this sense: it formally proves that there is an instance of
HorToric function such that the (24 1)-EA, with mutation parameter larger
than 1.66, has expected exponential runtime.

Lemma 2.6 Let ag = 0.3. Then, for all ¢ > 1.66, we have D(«y,c,€) > 0.

Proof We observe that D(ag,c,€) = Dl(o;%,lcf)pJ(rzZC(g,c,S)‘ Since both the con-

stant factor two and 1 — p are positive (the latter one because it is the sum
of the probabilities of the outgoing arrows), they don’t influence the sign of
D(ayp, ¢, €). Hence it is sufficient to analyse the sign of D1 (a, ¢, &) + Da(a, ¢, €).
We get the following

—ece™(1— (1 —ap)?(1 —€)cL(ag, ¢) — ape(1 — ag)e1740)¢ g (1720 — 1)
— a%(l —¢)cL(a,c,e) — (1 —ao)L(ag, ¢) — ape(1 — uco)e(l”"‘))c)

and hence it is sufficient to show

1— (1 —a0)%(1 —e)cL(ap, ) — ape(1 — ag)et%0)¢ 4 gy (et0)c 1)
—a3(1 —¢e)cL(ao, ¢) — (1 — ag)L(ao, c) — aoc(1 — ap)e1 =20 < 0

In order to do that we need a lower bound for L(«g,c). Since Lemma 2.4
sates that, for any fixed value of a, the function L(a,c) is monotonic in-
creasing in ¢, we easily get a lower bound by substituting ¢ = 1.66 in our
expression. We get a lower bound of L(«g,c) = —0.33. By setting this value
in the previous inequality we get

1+ 033(1 — D(o)zc — DC()C(l — (xo)e(l—txo)C + Déo(e(l_a())c _ 1)
+0.33a3c 4+ 0.33(1 — ag) — age(1 — ag)e1 =20 < 0
In order to prove that f(c) := 1+ 0.33(1 — ag)?c — agc(1 — ag)el—%0)e 4
ag (el — 1) 4+ 0.33n3c + 0.33(1 — wg) — age(1 — ag)el =% < 0 for all ¢ >

1.66 we do the following: we observe that f(1.66) = —0.02 < 0 and we
observe that f(c) is monotonic decreasing in ¢. We hence just have to show
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2.3. Analysis of the Drift

that f'(c) < 0 for all ¢ > 1.66. We have

F(c) = 0.33(1 — ap)? — apc(1 — arg ) eI 20 — 2apc(1 — ) 2e1~0)¢
+ ag(1 — ap)e1=%)¢ 1 0.33a3

= 0.33(1 — ap)? + 0.3303 — 2aoc(1 — o) 210 4w (1 — g )e1 400 (1 —

<017+003-15-044 <0

where in the last step we used that f'(c¢) is monotonically decreasing in c,
which naturally follows from its form. This concludes the proof. O

We observe that the proof of the lemma does not work for other values of
¢ < 1.66: for example f(1.64) > 0 and hence the proof would not hold for
c = 1.64.

The statement of Lemma 2.6, together with the formal arguments that we
present in Section 2.4, gives an answer to the question of this chapter: us-
ing the duplicate avoidance mechanisms on the (2 + 1)-EA hurts. In fact,
for all ¢ € [1.66,2.14), Algorithm 2 has expected exponential runtime, while
the classical (2 + 1)-EA has expected runtime ®(nlogn). A scenario that
gives intuitive insights on why this hold is the following: consider that in
a population {x(1),x®} with f(x(1) > f(x(®) the algorithm chooses x(!)
for the mutation operator. If it doesn’t flip any bit in x(1) (which happens
with constant probability g ~ ™), then the classical (2 + 1)-EA accepts the
offspring in the population and discards the less fit element x(?), while the
(24 1)-EA with duplicate avoidance discards the offspring because it is a
copy of x1). The choice of the classical variant of the algorithm is better for
two reasons: first it generates a population with an higher overall fitness,
second it provides an additional possibility (which has constant probabil-
ity) to improve the fitness of an element in the population without flipping
any zero-bit (and flipping a zero-bit has probability O(e), which is small
in the situation close to the optimum). We recall that this result indicates
the superiority of the classical algorithm because it suggests that it is more
robust and in general we prefer algorithms that work for a broad choice of
parameters.

In [8], Lengler showed that for the classical (2 + 1)-EA there is a threshold
co ~ 2.14 such that the expected runtime of the algorithm is exponential for
¢ > 2.14 and polynomial for ¢ < 2.14. Until now we have only showed that
for the variant of the algorithm with duplicate avoidance, we have expected
exponential runtime for all ¢ > 1.66. Although we have not been able to
prove if formally?, we believe that for all « € [0,1], for all ¢ < 1.64 and

2The problem is that both the equation to find the maximum value of the drift in function
of ¢ for a fixed « and the equation to find the maximum value of the drift in function of a for
a fixed ¢ don’t have an analytical solution.
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2.3. Analysis of the Drift

for ¢ small enough, we have D(«,c,e) < 0. If this last statement holds,
then we would be able to prove that for Algorithm 2 there is a threshold
co € [1.64,1.66] analogous to the ¢y =~ 2.14 found by Lengler.

In the remainder of this section we justify our belief that, for all « € [0, 1]
and for all ¢ < 1.64, the value of D(«, ¢, €) for € small enough is negative. The
informal arguments that we list now reflect what we did in order to ”"guess”
the value ¢ = 1.66 in Lemma 2.6. The first thing we tried to do was finding
the value of « (as a function of ¢) that maximizes the drift. After computing
the derivative we got a trascendental equation that does not have analytical
solutions. In order to find the value of a that maximizes the drift for some
¢, we plot the functions shown in Figure 2.2-2.5. They show the value of the
drift (the red function) with respect to a (the variable on the x-axis) for a
fixed value ¢ = 0.0000001 and multiple values of c.

0.2
02 c=05

0 02 04 06 08 1 o

-02 0.2

-04 0.4

-06 0.6

-0.8 038

4 -1

Figure 2.2: Value of the drift (y-axis) w.r.t. aFigure 2.3: Value of the drift (y-axis) w.r.t. a
(x-axis) with fixed ¢ = 0.0000001 and ¢ = 0.5 (x-axis) with fixed ¢ = 0.0000001 and ¢ =1

-0.2 02

-04 04

-06 -06

-0.8 -0.8

-1 -1

Figure 2.4: Value of the drift (y-axis) w.r.t. aFigure 2.5: Value of the drift (y-axis) w.r.t. «
(x-axis) with fixed ¢ = 0.0000001 and ¢ = 1.6 (x-axis) with fixed ¢ = 0.0000001 and ¢ = 1.7

From the plots above we observe that, apparently, the maximum value of
the drift increases together with the mutation parameter c. For ¢ = 1.6 the
drift is negative for all & € [0, 1], but for ¢ = 1.7 we have a positive drift for
example at @ = 0.3. This suggest that there is a threshold in this interval that
make the runtime of Algorithm 2 going from quasi-linear to exponential. In
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2.3. Analysis of the Drift

general, the value of a that maximizes the drift for a fixed value of ¢ changes
and it seems decreasing with higher values of c. In Lemma 2.6 we chosed
ap = 0.3 because this is a value that makes the drift positive with ¢ = 1.7.
The main utility of this plots is showing that considering ag = 0.3 as the
value that maximizes the drift close to 1.66 is a good choice.

So far we justified our choice of &y = 0.3 and that there could be a threshold
in the interval [1.6,1.7]. In order to get a more precise threshold, we used
MATLAB. The following MATLAB snippet suggests that, since D(«,c,¢) is
continuous, the drift is negative for all ¢ < 1.64 and has a zero at ¢ ~ 1.6506.

>>syms a C eps

>>L_NUMERATOR = - a*x(exp(-c*(a - 1)) - 1) - >>axcxexp(-c*(a - 1))*(a - 1) - 1

>>L_DENOMINATOR = a*(exp(-cx(a - 1)) - 1) + 1

>>L = L_NUMERATOR/L_DENOMINATOR

>>D1 = -eps*cxexp(-c)+(1-a) "2xeps* (1-eps)*c~2*exp(-c)L
+axeps*c~2*(1-a)*exp(-axc)-a*eps*cxexp(-c)*(exp(cx(1-a))-1)
+a”~2*eps* (1-eps)*c”2*exp (-c) *L

>>D2 = (1-a)*eps*c*exp(-c)*L+axepsxc™2*(1-a)*exp(-a*c)

>>p = eps*ckexp(-c)+(1-a) "2xeps*(1-eps)*c”2*exp(-c)
+axeps*c* (exp((1-a)*c)-1)+a"2*xeps* (1-eps)*c"2*exp(-c)
+(1-a)*eps*cxexp(-c)+axeps*c*exp (-a*c)

>>D = (D1+D2)/p

>>vpasolve(subs(D,{a,eps},{0.33,0.000000001})==0,c, [0,1.64])
OUTPUT: NO SOLUTION FOUND
>>if (subs(D,{a,c,eps},{0.33,1.6,0.000000001})<0)disp(’Negative drift’) ;end
OUTPUT: Negative drift
>>vpasolve(subs(D,{a,eps},{0.3,0.000000001}==0,c, [0,1.66])
OUTPUT: ans = 1.6506059309908460321441965861794

Summarising, in this section we formally proved that for all ¢ > 1.66 there is
an instance of HorToric function such that Algorithm 2 has expected expo-
nential runtime. Moreover we believe that there is a threshold ¢y ~ 1.6506
such that for all ¢ < ¢g the (2 4 1)-EA has expected runtime ©(nlogn). This
belief is justified by the following facts:

e A value of ay = 0.3 is close to the value of a that maximizes D(«,c, ¢)
for € small enough and c close enough to 1.65.

e D(0.3,c,0.0000001) is negative for all values of ¢ < 1.64 and is equal to
zero for ¢ =~ 1.6506.
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2.4 Proof of the Runtime

In the previous sections we have proved that, for all ¢ > 1.66, there is an
instance of HorToric with & small enough that has positive drift, i.e. with a
drift far away from the optimum. This is an important result, because it im-
plies that the runtime of Algorithm 2 with such a mutation parameter needs
exponential time to optimize such a function. Now we want to formally
prove this fact, by closely following the exposition in [11].

Lemma 2.7 For every constant 0 < & < % the following holds. Let ¢ € [L] and
consider the (2 + 1)-EA with duplicate avoidance under the following assumptions

o d([n],x) > e(1 +26)
o e(1+ ) <d(Api1,x) <d([n],x)+de

hold for both search points in the initial population. For t > 0, let x(*) be the
offspring in iteration t. Then, with probability 1 — e~ the following holds for
all t < L.

1. d([n],x®) > e(1+9)
2. d(Apq, xB) > e(1+4) ord([n],xB) > (1 +20)

Proof First, we recall that X; is the random variable for the number of one-
bits in the fittest element of the i-th special population. We stucture the
proof by doing a case distinction on the number of steps.

e For a number of steps i < B := "‘8—”6‘5 we prove that X; < Xp + 557”

and that this implies d([r] ,xt)) > ¢(1+4). Moreover, we show that
d(Api1,x) > e(1+ $) holds with probability 1 — e~

e For a number of steps i > B, we can apply the negative drift theorem to
show that X; < Xo. This implies d([n],x()) > ¢(1 + 26) and, since this
value is larger that e(1 + 0), it implies both statements of the lemma.

We begin with the case of a number of steps i < B. In the first part of the
proof, we consider a maximum number of B := "‘S—”f steps. We first show
that, with probability 1 — e ) we have

A(Aa,x0) > e(1+ )

In order to do that we observe that we the density of d(A;1) drops below

e(1+ %) if we flip at least 4 zero-bits in the hot topic of the current level.

We show that this happens with low probability. In order to do that we use

a Chernoff bound on a random variable X that denotezs ‘ghe number of zero-
& ne

bits flipped in the current hot topic. Since [E [X] = *£*, we get an upper
bound of

e—zlj(az—4a+4)5sn
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which is exponentially small in 7, and hence the second statement of the
lemma is proven. We use a similar argument to show that, with probability
1—e Q) X, < X, + S‘ST” for i < B. We define again another random
variable X that counts the number of bits flipped in B steps. It holds E [X] =
%8‘5 and an upper bound for the probability of flipping more that 8‘57" zero-

bits is

which is exponentially small in 7. We now have to show that X; < Xg + £,
together with the assumption d([n],x) > (1 + 26), implies d([n],x®)) >
€(1+ 9) for at most B steps. We have

H—Xl‘
n
I’I—XO—“E(ST’1
n
n—(n—e(l+20)n) —
n
ne(1+20) — ¢

n

3

> e(1+9)

d([n], x") =

Y

v

which proves the first statement of the lemma.

Now that we have proved the lemma for i < B, we prove that both state-
ments also hold for i > B. In particular, we need B to be linear in n. We
first show that X; < X, with high probability. In order to do that we just
need to show how to apply the negative drift theorem, in the version pre-
sented in [6] and reported as Theorem 1.2 in Chapter 1. We can replace
the variable X; of the theorem with our variable X;, and d is the negative
drift we have found in Section 2.2 (note that previously we have shown that
E [X; — Xit1] > 0, hence we can apply the argument by flipping the order
of the variables and the direction of the inequality). By choosing x = —di
(which is positive since d is negative), we get that an upper bound for the
probability of X; — X being larger than 0 is

6% min((s,;Tdii) e e—Q(n)

because d < 0 and i > B (and hence linear in n). We now just have to
prove that X; < X, implies that d([n],x(*)) > &(1 4 26) (and automatically
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2.4. Proof of the Runtime

also d([n],x")) > &(1 + 5)). Hence we can kill two birds with one stone
by proving both statements at the same time. We have that Xo = n —n -
d([n],x) < n—ne(1+ 25), where we used the assumption d([n],x) > e(1+
25). We get

S - (n—:l(1+2(5))
=¢e(1+20)

which completes the proof also for the case i > B. O

Lemma 2.7 was rather technical, but it will be useful to prove Lemma 2.8, a
fundamental lemma that will allow us to conclude that the runtime of the
(24 1)-EA with duplicate avoidance and ¢ > 1.66 has exponential optimiza-
tion time on some instances of HorToric with ¢ small enough. Our proof
of the runtime will consider an auxiliary process. The auxiliary process
considers the behaviour of Algorithm 2 on a function f, which is completely
equivalent to the HorToric function apart from a single detail: in HorToric,
the level increases to the maximum ¢’ € L such that the number of zero-bits
in By is at most ¢fn; in f the level can increase at most by one. Formally,
we define the level as 7(0) = 0, and if an offspring y*) of x(*) enters the pop-

ulation in round ¢, then we set 7(y)) := max{¢' € {min{ﬁ’(x(t)) +1, L}] :
I{j € B¢ : x; = 0}| < eBn}. Then the fitness of a search point x with respect
to f is

fx)=0x)-n*+ Y x-n+ Y x.

€A 11 i€ Ap(x)41

In Lemma 2.8 we show a useful property of the auxiliary process, and in
Lemma 2.9 we will show that the auxiliary process is equivalent to the pro-
cess we investigate in this chapter.

Lemma 2.8 There is a constant 6 > 0 such that the auxiliary process satisfies
d([n],x")) >e-(146) forall t < L.

Proof The advantage of the auxiliary process is that we may postpone draw-
ing A1 until we reach level / = /. In particular, since A;,; C [n] is a uni-
formly random subset, we may use the same assumptions of Lemma 2.7 to
observe that |d(A1,x) —d([n],x)| < e holds with probability 1 — e~(e")
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2.4. Proof of the Runtime

for both members x of the population when we reach level ¢. The expo-
nentially small error probability allows us to use a union bound and con-
clude that with high probability the same holds for all /. We want to show
that the auxiliary process, if running on level ¢ and starting with a popula-
tion that initially satisfies |d(As11,x) —d([n],x)| < ée for § < 2, maintains
d([n],x)) > e(1+6) for all new search points x) until t > L. By the first
conclusion of Lemma 2.7, d([n],x(")) > ¢(1 4 ) holds as long as the level
remains to be £ and t < L. When a search points x reaches level ¢ + 1, by
definition, we have d(By, 1, x) < €. Since By, is a uniformly random subset
of Ayt1, by Chernoff bound, we get that

Pr|d(Apiq1,x) > e(1+ Z) < e~ Men),
So we apply the second conclusion of Lemma 2.7 and conclude that d([n], x) >
(14 26). With high probability, it holds that d( A2, x) > €(1+25) — &6 and
the conditions of Lemma 2.7 are satisfied again for level ¢ 4- 1. By induction
we obtain d([n],x()) > (14 6) for all t < L. As the choice of ¢ is arbitrary,
we start with level £ = 0 and d([n], x(t)) > ¢(1+6) holds for all + < L, which
concludes the proof. O

Lemma 2.8 is the final tool that we need to prove the exponential runtime of
our algorithm with ¢ > 1.66. The next lemma formally proves this statement.

Lemma 2.9 For every ¢ > 1.66 there is a parameter « of the HoTrTopIC function
such that the (2 4+ 1)-EA with mutation parameter c visits each level of the Hot-
Toric function at least once. Since the number of levels is exponential, the algorithm
needs an exponential number of steps with high probability and in expectation. In
particular, with high probability, the optimization time is exponential.

Proof Let L = ¢" be the number of levels. In order to prove the statement
of the lemma, we show that the (2 + 1)-EA with duplicate avoidance on
HotToric behaves in the same way as on the auxiliary process f.

We want to show that Algorithm 2 has the same behaviour on HorToric and
on f: this fact, together with the observation that f visits an exponential
number of levels, proves the expected exponential runtime of the (2 + 1)-
EA with duplicate avoidance and sufficiently large ¢ for some instance of
HorToric. For the auxiliary process, i.e. the algorithm on f, we need to
uncover A;;1 and B;;; when a search point in the population reaches level
i. As we have already argued, we have d([n],x") > &(1 + ) for a suitable
constant 6 > 0. It is useful to assign every round f to a level ¢(f). Since we
will need to uncover By ), at some point after time ¢ (i.e. when its density of
zero-bits will be sufficiently small), its choice does not influence the behavior
of the auxiliary process until time ¢. Hence,we can first let the auxiliary
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2.4. Proof of the Runtime

process run until time f, and afterwards uncover the set By(;) 5. Since By(;) 12
is a uniformly random subset of size fn and d([n],x!) > (1 +4), it contains
at least Be(1 + J)n zero-bits in expectation. Moreover, by Chernoff bound,
the probability that B, contains at most fen zero-bits is

52
672(164—5) ,BEI’Z — eiQ(.Bgn)

The same argument also holds for By 3, ..., BL. Since L = " with desir-
ably small p > 0, we can afford a union bound over all such sets and all
t < L, which is a union bound over less than L? = ¢?*" terms. Hence, with
high probability we have

d(B,x")>e VI<t<Tand?(t)+2<i<L (2.3)

We now show by induction that £(t) = £(t). The base case £(0) = £(0)
follows from definition. For the induction step we have, using 2.3,

((i+1) =max{¢ € [L]:d(Bp,x) <e} =0(i+1) O

This implies that Algorithm 2 behaves in the same way in HorToric and in
f and this concludes the proof of the exponential optimization time.

We have finally proven the main result of the thesis: Algorithm 2 with mu-
tation rate ¢ > 1.66 needs exponential runtime to optimize some instance of
HotToric functions. This means that that we have an example that shows
that using a diversity preserving mechanism such as duplicate avoidance
hurts. In fact, the classical (2 4+ 1)-EA with mutation rate ¢ € [1.66,2.14) has
quasi-linear runtime.

Although we have not been able to prove it formally, in Section 2.3 we pro-
vided insights on why we believe that for all ¢ < 1.64 the (2 + 1)-EA with
duplicate avoidance has drift towards the optimum for all HorTorIic func-
tions. Both the results hold for a sufficiently small value of ¢, i.e. close to the
optimum. For the sake of completeness we now prove that if, as we believe,
the drift for all ¢ < 1.64 is towards the optimum, then the optimization time
is quasi-linear in 7.

Lemma 2.10 Ifforall c < 1.64 and all « € [0, 1] we have E [X; — Xj11] < 0, then
Algorithm 2 optimizes all instances of HotToric functions in expected runtime
O(nlogn).
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2.4. Proof of the Runtime

Proof For the lower bound, we use a Chernoff bound to observe that the
probability that the initial strings have at least 5 zero-bits is at least 1 — e,
and that each of this 5 bits needs to be flipped at least one in order to reach
the optimum. Since this is essentially a coupon collector process, we need
to flip at least 3Hx + O(n) bits in expectation and with high probability,
where H, denotes the n—th armonic number. Thus we also need Q}(nlogn)
rounds to achieve so many flips, since in each round we expect to flip a
constant number of bits with ¢ < 1.64.

Now we analyse the upper bound and we show that it is O(nlogn). We
define Y; = n — X;, i.e. Y; denotes the number of zero-bits in the i-th special
population. Let &g be the parameter of the HorToric function. We can show
that Y; < Ceon for a constant C > 0. In the previous section we showed
that Algorithm 2 with ¢ < 1.64 satisfies E [X; — X;11] < 0 for all instances
of HorToric. We can reformulate this result and we get E [Y; — Y; 1] >
¢ . e. By defining h(Y;) := $Y; we can apply the additive drift theorem (see
Theorem 1.3 in Chapter 1) and we get

EIT)= gy + [ 2 s = O(1) + 2 (log(m) ~ log(1)) = O(nlogn)

which proves that the value of the upper bound coincides with the lower
bound and hence the lemma is proven. O
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Chapter 3

Conclusions and Future Work

We have studied the impact of the duplicate avoidance mechanism for the
(24 1)-EA on HotToric close to the optimum, and we showed that it hurts.
In fact, for all ¢ € [1.66,2.14), the classical (2 + 1)-EA has an expected opti-
mization time ©(nlogn), while the variant that promotes genotypic diver-
sity in the population needs exponential time to optimize the function with
high probability and in expectation. The reason for this is that the classical
(2+1)-EA, starting from a population {x,y} with f(x) > f(y), allows to cre-
ate a population {x, x} with constant probability: it is sufficient to choose x
as parent and not touching any of its bits (which happens with probability
~ e~ ). Duplicate avoidance forbids this shortcut: in order to create a popu-
lation with the same total amount of one-bits of {x, x} starting from {x, y}, it
needs to flip at least a zero-bit which, close to the optimum, happens rarely.

Many questions about the impact of diversity preserving mechanisms for
evolutionary and genetic algorithms remain open. For example, is there
a difference between the (2 4+ 1)-EA and the (p + 1)-EA with p € Q(1)?
The scenario we explained above generalizes also to larger populations, and
hence it could be the case that the diversity preserving mechanism hurts
also in the general case: however, it is desirable to prove it formally. And
what if y is not a constant, but an arbitrarily large parameter? The size of
the population is also a delicate matter, as presented in [11]. The same mech-
anism could also be applied to genetic algorithms, a variant of evolutionary
algorithms that uses non only mutation, but also the crossover operator in
order to not “throw away” good genes of search points with lower fitness.
The general trend is that crossover helps (particularly in a function as Hot-
Toric, where we want to avoid to flip a zero-bit in the hot topic and many
one-bits outside of it), but it would be interesting to study the impact of du-
plicate avoidance also in that scenario. These questions are valid both to the
situation close to the optimum and the general situation with a larger value
of e. Moreover, duplicate avoidance is only one example of diversity pre-
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serving mechanism: other diversity preserving mechanisms such as fitness
diversity, deterministic crowding, fitness sharing and clearing are of interest
and their impact on HorTorIc has not been investigated yet. There are still
many possibilities.
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