

⁻ Harvard T.H. Chan School of Public Health (Boston, MA), ² Genospace LLC, (Boston, MA), ³ Dana-Farber Cancer Institute (Boston, MA), ⁴ Channing Division of Network Medicine, (Boston, MA))

OBJECTIVES Gene expression data is typically collected or processed in different groups or **batches**. As a community, computational biologists have long recognized that proper analysis of this data relies on **correcting** for systematic differences in experimental settings, usually referred to as "batch effects". perimental Conditions Gene expression data Gene co-expression data Current batch correction methods do not account for differences in co-expression between batches. This can lead to **biased results** in important applications, including: • (differential) gene co-expression analysis, • gene regulatory network (GRN) inference. **Contributions:** \rightarrow We show the existence of **residual batch effects** in gene co-expression data after standard batch correction. \rightarrow We present a **new batch correction method** to effectively **identify** and **remove** these spurious residual differences. SUPPLEMENTAL INFORMATION $\leftarrow \mathbf{bioR}\chi\mathbf{iv} \mathbf{ preprint} (Dec, 2023)$ \leftarrow References & acknowledgements \leftarrow Contact information Tools from our group (netZoo) \rightarrow REFERENCES 1. Johnson et al. (2007). Adjusting batch effects in microarray expression data using empirical bayes methods. *Biostatistics*, 8(1):118–127. 2. Ritchie et al. (2015). Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic acids research, 43(7):e47–e47. **3**. Leek et al. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*, 11(10):733–739. 4. Freytag et al. (2015). Systematic noise degrades gene co-expression signals but can be corrected. BMC bioinformatics, 16:1–17. 5. Pickrell et al. (2010). Understanding mechanisms underlying human gene expression variation

with rna sequencing. *Nature*, 464(7289):768-772.

HIGHER-ORDER CORRECTION OF PERSISTENT BATCH EFFECTS IN CORRELATION NETWORKS

Soel Micheletti^{1*}, Daniel Schlauch^{1,2,3*}, John Quackenbush^{1, 3, 4†}, Marouen Ben Guebila^{1†}

THE METHOD

Goal	Design matri
	Column 0: interce
atch corrected case/control comparison	Column 1: 0 for control,
	Columns $2K$: Batch and
Batch correction	Column 0: interce
&	Columns $1K$: covariates
covariate-specific co-expression	

