
Information Security

Introduction and History

In the past cryptography was the art of encrypting mes-
sages (mostly for military applications). There was a lack
of precise definitions and it was usually insecure. Nowa-
days it is the science of securing digital communication
and transactions (not only encryption, but also authen-
tication, digital signatures, e-cash, cryptocurrencies, ...).
Now there are formal definitions, there is a systematic
design and the constructions are very secure. This tran-
sition was possible in the seventies thanks to the following
scenario:

• Technology: affordable hardware

• Demand: companies and individuals started to
do business electronically

• Theory: computational complexity theory was
born (and this allowed researchers to reason about
security in a formal way)

The following are some kind of arbitrary definitions
which are worth mentioning:

• Cryptography: constructing secure systems

• Cryptanalisis: breaking the system

• Cryptology = cryptography + cryptanalisis (often
abbreviated crypto)

We want to construct schemes that are provably
secure:

• Why? In many areas of computer science formal
proofs are not essential. For example, instead of
proving that an algorithm is efficient we can simu-
late it on a typical input. In cryptography this is
not true because there cannot exist an experimen-
tal proof that a scheme is secure. This can not exist
because a notion of typical adversary does not ma-
ke sense. Moreover security definitions are useful
for modularity purposes.

• How do we define it? We use the Kerchoffs
principle, which says that since the enemy knows
the system, the cipher should remain secure even if
the adversary knows the specification of the cipher.
The only thing that is secret is the key k (that is
usually chosen u.a.r from a key space). Not respec-
ting this principle means that we have security by
obscurity.

Now we are going to see some historical ciphers for the
encryption problem, i.e. we have a key space K,
a plaintext space M and a ciphertext space C. An
encryption scheme is a tuple (Enc,Dec,Gen) where:

• Enc : K ×M⇒ C is an encryption algorithm

• Dec : K × C ⇒M is a decryption algorithm

and the correctness property is:

∀k ∈ K Deck (Enck(m)) = m

Now we are going to see some examples of ciphers for
encryption.
Caesar’s Shift cipher: just take a letter and shift it
by k positions. For example for k = 3, a becomes D, b
becomes E, y becomes B and so on. Formally we have
K = {0, 1, . . . , 25}. In order to break this cipher one can
check all possible keys, i.e. try all keys until we find a
message that makes sense. This is called brute force
attack. Moral of the story: the key space must be large.
This is a necessary condition, but is not sufficient.
Substitution cipher: we choose a permutation of the
letters and we use it for encryption, decryption. This is

less easy to break than the shift cipher, but one can use
statistical pattern of the language (e.g. vowels are very
frequent, not too many consonants in a row, ...) to break
it. The key observation is that the ciphertext has the
same frequency distribution as the plaintext and one can
exploit this.
Vigenere’s cipher: instead of using a single shift for
the whole message we use different shifts for each letter
(periodically). Concretely we write the plaintext and the
keyword repeated, then we shift the plaintext letter by
cipher key. For example:

Although this cipher is more involved, it is not secure.
In facts, if the length of the keyword is known, one can
perform a frequency attack. In order to find the length
of the key there are several techniques, for example one
can try different length (sequentially, i.e. 1, 2, 3, ...) and
compute individual letter probabilities. If those are si-
milar to the one of the English language, the length is
probably determined.
In contemporary cryptography ciphers are designed in a
systematic way. The main goals are:

1. Define meaning of security

2. Construct schemes that are provably secure

We begin with the first point. Defining security of an
encryption scheme is not trivial. Consider the following
experiment:

1. The key k is chosen u.a.r. from K

2. C = Enck(m) is given to the adversary for a
meaningful message m

How do we define security?

• Idea 1: the adversary should not be able to com-
pute k. Problem: what if Enck(m) = m? Also if
the adversary can not compute k, the encryption
scheme is not secure (it does not encrypt at all).

• Idea 2: the adversary should not be able to compu-
te m. Problem: what if the adversary can compute
the first half of m? This is not what we want.

Soel Micheletti

• Idea 3: the adversary should learn no informa-
tion about m. Problem: the adversary may have
some a priori information about m (e.g. the lan-
guage of the text). If the adversary knows only this
information the system is still secure.

• Idea 4: the adversary should learn no additional
information about m. This makes sense, but
how do we formalize it?

Idea 4 is also called information-theoretically secret
or unconditionally secret. We say that an encryption
scheme is perfectly secret if for random variables M ,
C and every m ∈M, c ∈ C, we have:

P (M = m) = P (M = m|C = c)

in other words, the distributions of the variables M and
C are independent. Some more equivalent definitions are
represented in the following figure:

One-time pad: a perfectly secret scheme This
scheme is very simple: given a parameter t, we have
K = M = {0, 1}t (i.e. t is the maximal length of the
message in bits and we use a key with the same length
of the message). The encryption and decryption work as
follows:

• Enck(m) = k ⊗m

• Deck(m) = k ⊗ c

where ⊗ is the bitwise XOR operator. Correctness is
trivial because Deck(Enck(m)) = k ⊗ k ⊗m = m. Now
we have to prove that this scheme is perfectly secret. In
order to do that we use the definition, i.e. we calculate:

Pr [M = m|C = c] =

1︷ ︸︸ ︷
Pr [C = c|M = m] · Pr [M = m]

Pr [C = c]︸ ︷︷ ︸
2

=
2−t · Pr [M = m]

2−t

= Pr [M = m]

because:

1. Pr [C = c|M = m′] = Pr [m′ ⊗K = c] =
Pr [K = m′ ⊗ c] = 2−t

2. Pr [C = c] =
∑

m′∈M Pr [C = c|M = m′] ·
Pr [M = m′] = 2−t ·

∑
m′∈M Pr [M = m′] = 2−t

We observe that OTP can be generalized by letting
K = M = C = G where (G, ?) is a group and using
the operation ? instead than XOR.
This scheme, however, has some drawbacks:

• The key is as long as the message (and this is not
practical)

• The parties must know in advance the length of the
message

• The key can be used only once, otherwise, given two
encrypted messages c and c′ one can do the follo-
wing: c⊗c′ = (m⊗k)⊗(m′⊗k) = m⊗m′. Knowing
the bitwise XOR of the two messages is sufficient
to perform frequency analysis (as happened in the
VENONA project)

• It is hard to generate truly random strings

In general, we have that if an encryption scheme is per-
fectly secret, then |K| ≥ |M| holds. In order to show the
statement we show that if |K| < |M| then the scheme
cannot be perfectly secret. Assume |K| < |M| and con-
sider the uniform distribution over M and let c ∈ C be
a ciphertext that occurs with non-zero probability. Let
M(c) be the set of all possible messages that are possible
decryptions of c. We have |M(c)| ≤ |K|. If |K| < |M|

there is some m′ ∈ M such that m′ /∈ M(c). But then
we have:

Pr [M = m′|C = c] = 0 6= Pr [M = m′]

and the scheme is not perfectly secure.
This is a special case of Shannon’s theorem, which
states:

Let (Gen,Enc,Dec) be an encryption scheme with mes-
sage space M, for which |M| = |K| = |C|. The scheme
is perfectly secret if and only if:

1. Every key k ∈ K is chosen u.a.r. from Gen

2. For every m ∈ M and every c ∈ C, there exists a
unique key k ∈ K such that Enck(m) outputs c

Computational Security

We have seen that perfect security requires that M and
EncK(M) are independent. This assumption may be
too strong for practical purposes, in fact we require that
M and EncK(M) are independent from the point of
view of a computationally-limited adversary with
high probability. This can be formalized with the help
of complexity theory. Concretely we construct schemes
that in principle can be broken (e.g. with a brute force
attack by iterating over all possible keys) but in order to
be broken the adversary needs huge computing power
and/ or a lot of luck. Typically we assume that a sche-
me X is secure if for all probabilistic polynomial-time
Turing Machines M the probability that M breaks the
scheme X is negligible (i.e. it decays faster than a poly-
nomial). In order to get a more precise intuition about
this concept consider the following game:

• An adversary E chooses two messages m1 and m2

of the same length.

• E gives m1 and m2 to an oracle.

• The oracle selects a random message between m1

and m2 and encrypts the chosen message with a
key k chosen u.a.r.

• The oracle gives the encrypted message back to R.

Soel Micheletti

• E has to guess which of the messages was chosen
by the oracle.

We say that (Enc,Dec) is indistinguishable en-
cryption if any randomized polynomial time adversary
guesses the message correctly with probability at most
0.5 + ε(n), where ε is negligible.
Note that we haven’t made any assumptions about what
happened before the game, so we must keep in mind the
situation of a chosen-plaintext attack (CPA), whe-
re E can send an arbitrary message to the oracle and
know the encrypted version of its message. Also in this
case E must not be able to find a strategy to win the
game. It is easy to see that E can send the messages
m1 and m2 both in the learning and in the challenging
phase and the results must be different. For this reason
we observe that every CPA-secure encryption has to
be randomized or have a state. At this point one could
ask if it is possible to prove IND-CPA encryption,
i.e. an algorithm (Enc,Dec) with |k| < |m| that satisfies
the previous requirements without any hardness as-
sumption. The bad news is that if such an algorithm
exists, then P 6= NP (and since no one has ever proven
the P vs NP problem it is presumably very difficult to
find). Finding IND-CPA encryption (without hardness
assumption) is at least as difficult as proving P 6= NP .

Stream Ciphers

In cryptography, when we are in the context of compu-
tational security, we can prove conditional results. That
is, we can show theorems of the type: suppose that com-
putational assumption A holds, then scheme X is secure,
or suppose that scheme Y is secure, then scheme X is
secure. This means that we have to believe in some as-
sumptions (such as the Diffie-Hellman assumption that
computing the discrete logarithm in general is a difficult
computational problem). In this section we work with
pseudo random generators. We know them from eve-
ryday programming, but the pseudo random generators
don’t just need to pass some statistical tests in order
to be considered useful for cryptographic purposes, but
they need to satisfy more involved properties. Once we
have a pseudo random generator, secure encryption and
decryption are possible as showed in the following figure.

In the context of cryptography, we say that a genera-
tor is pseudorandom if, for all probabilistic polynomial
time adversary, it is not possible to distinguish an out-
put of the generator from a truly random string with
non-negligible probability. But how do we construct a
pseudo random generator? We begin with a very theo-
retical example: one-way functions. If we have a func-
tion such that it is easy to compute f(x)∀x, but it is
difficult, given a y, to find an x such that f(x) = y,
then we can construct a pseudo random generator (this
is one of the most famous results in symmetric crypto-
graphy, and we don’t prove it here). Moreover we ha-
ve that, if computationally-secure encryption exists, also
one-way functions exist (because the game of encrypting/
decrypting satisfy its purposes if it is easy in one direc-
tion and difficult in the other one. A summary of those
implications is presented in the following figure.

More practical pseudo random generators are stream ci-
phers: given a seed s they output an infinite stream of
bits. Of course, to encrypt multiple messages, we need to

change the random bits that we use. An idea would be
taking different spots of the outputs of the stream cipher
that we obtained with a single random seed, but this im-
poses some practical challenges. A more practical idea
is to apply as input to the stream cipher not only the
seed, but also an initialization vector that changes in ti-
me and is later in cluded in the ciphertext. An example of
this is RC4 which, given a seed, applies a key-scheduling
algorithm based on permutations.

Private Key Authentication

Authentication is often melt with integrity, let’s define
what those concepts are:

• Integrity: if Alice sends a message m to Bob, then
a malicious user E can not interfere with the tran-
smission (i.e. it can not modify the message in any
way or insert a new message without Bob noticing).

• Authentication: when Bob gets a message m
from Alice, he can check that this message actually
comes from Alice.

Those concepts, in some applications, could be even mo-
re important then confidentiality. Think for example to
bank transactions: it is crucial that nobody can chan-
ge the content of the transaction (e.g. by changing the
amount of money or the beneficiary of the transaction),
while in some cases it is fine to read the transaction
(think for example to Bitcoin transaction where only
pseudonyms are used).

In general encryption does not guarantees integrity. One
could think that if the decrypted message makes sense
in some context, then the message was not corrupted.
However this is not true: for example in OTP it is pos-
sible that by changing some bits of the ciphertext, the
decryption returns a (different) message that still makes
sense.

The basic idea of message authentication is the following:

Soel Micheletti

Since we have to be as pessimistic as possible the above
schema must hold also if the attacker has several exam-
ples of messages with the corresponding tag. The same
holds also if the attacker can choose the set of messages
to be tagged.

We say that an algorithm MAC is secure (in the context
of authentication) if for all polynomial-time adversaries,
the probability that the adversary breaks the algorithm
(i.e. it generates an arbitrary tagged message accepted
by the receiver), is negligible in terms of the security pa-
rameter n. Note that this definition does not protect
against replay attacks: since the verify algorithm has no
state there is no way to detect whether the tagged mes-
sage is fresh or not. This problem has to be solved by
higher applications layers via time-stamping, sequence
numbers or other methods.

Now we see how we can construct a MAC starting from
a block cipher. If we want to work only with messages
of a given length n we can simply use a block cipher and
everything works properly. If the length is less than n we
can use zero padding. But what if the length is greater
than n? We proceed step by step:

• We could just divide the message in several blocks,
use the block cipher on every block and concatena-
te the results in order to obtain the tag. This does
not work because we can perform permutations on
the blocks as shown in the next figure:

• In order to avoid the problem of the previous sli-
de one could think that adding a counter to each
block would solve the problem. However it is not
the case: in fact, by cutting both the message and
the tag in some spots one would be able to compute
a new message with a valid tag.

• An improvement to the previous issue is to add the
length of the message to each block. However this
is still not the solution, in fact one could break this
algorithm as shown in the next figure:

• The solution that works is to add a (per message)
random value to each block. This random value is
also added at the beginning of the tag, such that
the receiver can take it and recompute the tag from
the message in order to authenticate what it gets.
If we use a pseudorandom permutation this algori-
thm is provably secure. In fact if we suppose that
this is not a secure MAC, an adversary A could
break it with non negligible probability and hence
we could construct a distinguisher that distinguish
F from a random permutation.

In order to construct a practical MAC (what we just
showed is correct but not very efficient), we can use
CBC-MAC:

Note that the length parameter is necessary, otherwise
one could perform a splicing attack:

Soel Micheletti

Some people don’t like CBC-MAC because hash func-
tions are more efficient and they are not protected by
export regulations.
Hash functions: the idea is very simple, when we are
dealing with long messages (more than one block), we use
a hash function to compress it to the size of one block
and then we use the keyed block cipher as in the single
block case we have seen before.

However, we have to chose the hash function properly
since we are concerning with a cryptographic applica-
tion. One of the most important properties that are re-
quired from the hash functions used in this context is
collision resistance. This means that given the hash func-
tion, it should be difficult to find a pair (m,m′) such that
H(m) = H(m′). In fact, if an attacker would be able to
forge such a pair, the authentication property would be
invalid: in facts, according on how the final tag is com-
puted, the equivalence of the value of the hash functions
implies that the final tag is the same for both messages
and hence the attacker would be able to forge a tag for
a message different than the original one. Of course is
impossible to avoid collisions since we are using a func-
tion from a very large domain (the one of all possible
messages) to a much smaller domain (the one of all pos-
sible messages of a given size): the idea is, although those
collisions exist, to design the hash function such that fin-
ding them is difficult for an adversary. In other words we
say that H is a collision-resistant hash function if it is
practically impossible to find collisions in H (where for
practically impossible we mean with negligible probabili-
ty in terms of a security parameter n). Examples of such

functions are the family of SHA hash functions. In ge-
neral terms we define an hash function as a probabilistic
polynomial-time algorithm H such that H takes as input
a key s ∈ {0, 1}n and a message x ∈ {0, 1}∗ and outpu-
ts a string Hs(x) ∈ {0, 1}L(n) where L(n) is some fixed
function. Of course L(n) can not be too small, otherwise
finding a collision becomes trivial.

In general we have that, if H and F are secure, then the
way we generate our tag is also secure. An informal proof
of this fact is shown in the next figure:

In general, how do we construct H? We start from an
easy case and then we generalize it. If we want to find
an hash function that starts from a string of length 2L
and outputs a string of length L we could just take the
message and a key of the same length and use a block
cipher. We can use this hash function (which we denote
h) to construct an arbitrary hash function H. A first
approach to do it is the following:

However this approach does not work since it introduces
problems with the zero padding. There is no difference
between a message that ends with zero and another one
which is shorter and is made longer with zero padding.
This problem can be easily overcome as shown in the
following figure:

Now we want to show that this construction is secure.
That is we want to prove that if h is a collision-resistant
compression function, then H is also a collision-resistant
hash function. We prove this indirectly, i.e. we assume
that H is not collision-resistant and we show that h is
also not collision-resistant. We distinguish two cases:

• |m| = |m′|: since we assume that H is not
collsion-resistant there exist two different messa-

Soel Micheletti

ges m and m′ such that H(m) = H(m′). From the
construction of H we get the following:

Formally we are finding an i such that (mi, zi) 6=
(m′i, z

′
i) and, since we assumed that m 6= m′ such

an i always exists.

• |m| 6= |m′|: the construction is even simpler.

Until now we only concerned with collision-resistance,
but this is not the only property that one could hand-
le when treating hash functions. Two other (weaker)
notions are:

• Preimage resistance: given hash value v, find x
such that h(x) = v.

• 2nd preimage resistance: given x, find x′ 6= x
such that h(x) = h(x′).

Until now we have seen that hash functions are a useful
tool to simplify the case where we have long messages.
But is it possible to construct MACs only from hash
functions? A first idea would be to just return the value
of the hash function applied to the message concatenated
with the key. Unfortunately this is not secure, as shown
in the next figure:

This naive idea does not work, but there are variants that
are secure. A first example is NMAC:

NMAC is secure, however it has some drawbacks: first
most real-world hash functions do not permit to use two
different keys and second the new ”key” (composed by
k1 and k2 is too long). A solution to those drawbacks is
HMAC:

This construction seems artificial but has some nice
provable properties and can be easily implemented as:

HMACk(m) = H((k xor opad)||H(k xor ipad||m))

Public Key Cryptography:
Introduction and Diffie-Hellman

Until now we have studied private key cryptography,
which is also called symmetric cryptography. This
names comes from the fact that both Alice and Bob can
use the same scheme (with the same key) for both en-
cryption and decryption (analogously, to sign and check
the integrity of the message). Now we study public key
cryptography or asymmetric cryptography. The idea
is to use two different keys, a public one and a secret one.
Concretely:

• The public key is used for encryption, the secret
key for decryption. More in detail: Bob decides a
public key and generates a secret key; then it makes
the public key available to everyone such that eve-
rybody can send him an encrypted message (and
Bob is the only one that can decrypt it since it is
the only one that knows the secret key). In this
context we speak of asymmetric cryptography: if
Bob wants to send a message to Alice, he can not
use this keys, he needs the public key decided by
Alice.

Soel Micheletti

• In the case of authentication the secret key is used
to compute the tag and the public key is used to
verify the correctness of the tag. Hence every actor
will make a public key available and, every time he
sends a message, all other people will be able to
verify that the tag was generated by that actor.

Public key cryptography has several advantages over pri-
vate key cryptography: first of all we have that secrecy is
not required and we need less keys (a key for each actor,
not a key for each pair of actors). In the case of digi-
tal signatures we have, that are publicly verifiable and
transferable. That is:

Moreover this mechanism provides non-repudiation: if
Bob says that has got (m,σ) from Alice, Alice can not
say it’s not true, I have never signed m. A judge can
easily verify whether the message was signed by Alice or
not by using Alice’s public key.

Is public key cryptography possible? Yes, an analogy in
the real world is the one of a lock. A person can di-
stribute several (open) locks to everybody. Then when
someone wants to encrypt a message, he puts it in a box
and he locks the box with the lock. Only the original
person (the one who has the lock of the key), can unlock
the lock and read the message in the box. In general we
assume that there exist functions which are easy in one
way and easy to invert if and only if one has the secret
key. The idea is shown in the next figure:

What kind of one-way functions are used in practice?
Here number theory comes into play, in facts we use ma-
thematical problems that are believed to be difficult. Pay
attention to the fact that some of the problems that are
believed to be hard for classical computers are shown
to be easy for quantum computers: an example of this
is factorization, which is difficult for classical computer
but hard for quantum computers. Another very famous
problem that is exploited in this context is the discrete
logarithm problem: i.e. it is easy to compute gx whe-
re g is a generator of a cyclic group G, but it is difficult
to do the inverse (of course, if P = NP then computing
discrete logarithms is easy). Examples of such groups are
Z∗p, where p is a (large) prime.

With discrete logarithm we have a one-way function.
Now we will use this function to construct a key ex-
change protocol, which we will convert later into a
public key encryption protocol. The key exchange proto-
col we study now is known as Diffie-Hellman protocol
and is represented in the schema below:

We say that this protocol is secure if an adversary that
knows G, g, gx and gy can obtain no additional infor-
mation about gxy, i.e. it can not distinguish between
gxy and a random string of the same length with non-
negligible advantage. It is easy to see that if computing
the discrete logarithm is easy, then this protocol is inse-
cure (one could simply calculate x and y and then com-
puting the key). However, if the discrete logarithm is a
hard problem, then the protocol could still be insecure.
In fact we have the following:

• An element y is called quadratic residue (QR) if
there exists an a such that a2 = y.

Soel Micheletti

• Testing whether y ∈ Z∗p is a QR is possible in
polynomial time.

• By observing y = gx one can determine, whether x
is even or odd. This holds because g must be odd
(otherwise it could not be a generator) and if x is
even, then gx must have a quadratic residue, if x is
odd then there is no quadratic residue.

• This implies the following problems in Z∗p:

• Solution: don’t consider Z∗p (because here we can
gain information about the key), but consider the
subgroup QRp such thath p is a safe prime (i.e.
p = 2q + 1, with q prime).

Note that the Diffie-Hellman key exchange protocol
is secure only against a passive adversary, but is in-
secure against active adversaries that can launch a
man-in-the-middle attack as follows:

Does this means that Diffie-Hellman is useless? No, in so-
me applications this risk might be acceptable and, in ge-
neral, this is a very useful building block when combined
with other measures.

Now we study Elgaman encryption, a public-key en-
cryption scheme based on Diffie-Hellman key exchange
that combines the idea of OTP.

In general, it can be proven that if the DDH problem is
hard relative to G, then the Elgamal encryption scheme
is CPA-secure.

Public Key Cryptography: RSA

RSA encryption scheme was invented by Rivest, Shamir
and Adleman in 1977 and in a nutshell is represented
below:

RSA key generation

1. Choose two prime numbers p and q of size n

2. Compute N = pq

3. Compute totient Φ(N) = (p− 1)(q − 1)

4. Choose e relative prime to Φ(N), i.e.
gcd(e,Φ(N)) = 1

5. Compute d = e−1 modΦ(N)

Output: public key pk = (e,N) and private key
sk = (d,N)

Correctness: we have to show that m = (me)
d

modN .
We give an intuition of the proof:

(me)
d

= m1 modΦ(N)

= m1+kΦ(N)

= m
(
mΦ(N)

)k
= m(1 modN)k

= m modN

Where the fact that xΦ(N) = 1 modn follows from Eu-
ler’s theorem (under certain conditions and also if those
conditions don’t hold the correctness holds, but the proof
gets more elaborate).

Security and assumptions: in general RSA is secure
if computing d from e is hard. One can show that this
is equally difficult as computing Φ(n) or as factorizing.
Moreover, there is also the RSA assumptions that comes
into play (i.e. the fact that computing e−th root in Z∗N is
hard. The assumptions are summarized in the following
figure:

Soel Micheletti

An important property of RSA is the homomorphicity,
that is:

RSAe,N (m0 ·m1) = (m0 ·m1)e

= me
0 ·me

1

= RSAe,N (m0) ·RSAe,N (m1)

which has the bad consequence that by checking if
c0 ·c1 = c the adversary can detect, whether RSAd,N (c0)·
RSAd,N (c1) = RSAd,N (c)

However, the RSA discussion we discussed until now, is
not secure if we consider the chosen-plaintext attack we
saw for public-key encryption. In that case we wanted
that an adversary can not distinguish between the ci-
phertext of messages m1 and m2. In this case, since
the adversary can compute the ciphertexts by himself,
can easily win the game. In general, we said that no
deterministic encryption scheme is secure. How can we
add some randomness to RSA? The solution is presented
graphically in the following figures:

This method works only for messages which are shor-
ter than the key. What can we do for longer texts? A
first, naive solution would be to divide the message in
blocks and encrypt each block separately. A better solu-
tion is combining private-key encryption with public-key
encryption. For example one could use private-key en-
cryption to exchange a public key k and then use public-
key encryption with k with some efficient methods of the
previous sections to encrypt the message.

RSA signatures: the mechanism is very similar to
encryption.

We say that this scheme is secure if an adversary, by
having an arbitrary set of examples of signed messages,
can not forge another one for a new message with non-
negligible probability. This does not hold with the sche-
me above, in facts one could design the following attack
by exploiting the homomorphic property of RSA:

1. Query signature σ1 for m1

2. Query signature σ2 for m2

3. Output (m1 ·m2, σ1 · σ2)

The solution to this issue is to hash the message befo-
re sign it. This method is widely used, but there is no
proof that, when H is only collision-resistant, then the
signature scheme is unforgeable. In order to get a formal
proof we need H to be a random function.

Public Key Cryptography: Zero
Knowledge Proofs

The basic idea of Zero Knowledge Proofs is very sim-
ple: we want to find a protocol to show that we know a
secret s without revealing s. An analogy is the following:

Soel Micheletti

We have a prover P that has to show that he knows s
(without revealing it) and a verifier V that has to be sure
that P knows s. In this case we can imagine the following
maze with a door in the middle. In order to unlock this
door one needs to know s. The zero knowledge proofs is
simply that P goes into the maze and takes an arbitrary
direction. V can watch P all the time and V is happy
if and only if P enters the maze in a direction and exits
from the other one. In this case V is sure that P knows
s.

Some properties of a zero knowledge proofs are:

• Completeness: if both P and V are honest, the
protocol works.

• Soundness: no P without knowledge of s can
convince V with non-negligible probability. That
is, the prover can not make false statements.
Moreover, assume that P can convince V with
non-negligible probability. Then there must exi-
st a knowledge extractor algorithm that, given P ,
computes the secret.

• Zero knowledge: the proof does not leak any
information about s.

• There exists a simulator that, on input the initial
state of V , outputs a fake transcript of the protocol.

An example is given by Schnorr identification
protocol:

Public Key Cryptography:
Commitment

The idea is that a party wants to commit a value x wi-
thout revealing it, but without the possibility of changing
it later. A common analogy is the one of a bid in an auc-
tion: everyone writes the bid, puts it in an envelope and
puts it on the table. In this way other parties don’t know
the value of the bid, but the value is fixed and can’t be
changed.

In the commit stage, P locks x in a box and sends it
to V . In the reveal stage, P gives the key box to V , V
opens the box and learns x.

The properties of a commitment protocol are:

• Hiding: after commit phase, V learns nothing
about x.

• Binding: after the commit phase, there is only
one value (i.e. x), that P can succesfully reveal.

Let’s discuss a first example:

• Commit: P generates a key k and outputs c =
Enck(x)

• Reveal: P sends k to V and V decrypts c with k
in order to learn x.

Soel Micheletti

This scheme is hiding (because there is no way for V to
learn x after the commit phase without decrypting the
message), but is not binding: in facts, P can send a key
k′ 6= k to V in the reveal phase and in this way V learns
x′ = Deck′(Enck(x)) 6= x.
Another one could be the following:

• Commit: P outputs c = H(x)

• Reveal: P sends x to V , V verifies that c = H(x)

This scheme is binding (because revealing a x′ 6= x would
mean finding an x′ such that H(x′) = H(x) and this is a
contraddiction to the fact that H is collision resistant),
but not hiding.
The following scheme, known as Pedersen commit-
ment scheme, works as follows:

• Setup (receiver): pick primes p and q such that
q divides p − 1. Receiver picks generators g, h of
the order q subgroup of Z∗p. The public parame-
ters are p, q, g, h, while there is a secret parameter
a which is the discrete logarithm of k basis g, i.e.
h = ga modp.

• Commit: pick random r from Zq and output c =
gxhr modp.

• Reveal: output x and r.

• The verifier checks that c = gxhr modp.

This scheme is perfectly hiding because for any x′ there
exists an r′ such that gxhr = gx

′
hr

′
and therefore, for

any given c, any value x is likely to be committed. No-
te that r′ = (x − x′)a−1 + r modq. This scheme is also
computationally binding: in facts, given c, we have that
if P can reveal x and x′, then P can compute the di-
screte logarithm. In facts P has to know x, r, x′, r′ such
that gxhr = gx

′
hr

′
modp and since h = ga modp we ha-

ve x+ ar = x′ + ar′ and P can compute a, which is the
discrete logarithm of h.

Soel Micheletti

