
Financial Economics

Basics

Financial assets can be categorized as follows:

• Riskless assets: assets whose future values can be
known with certainty. These are purely theoretical,
however some items are considered as (almost) ri-
skless assets, e.g. government bonds and savings
accounts.

• Risky assets: assets whose future values may de-
pend on the realization of some events (e.g. health
insurance, stocks, options, ...)

• Derivatives: risky assets whose future values
depend on the price of other assets.

A zero-coupon bond with maturity t yields no pay-
ment before period t and pays one in period t. We deno-
te by p0,t the price of a zero-coupon bond with maturity
t at time zero. In other words, p0,t is the value at ti-
me zero of one unit at time t. In absence of arbitrage,
p0,0 = 1.

The concept of p0,t allows us to define rt, the discre-
te per period forward interest rate between timestamps
t− 1 and t, by:

p0,t =
p0,t−1

(1 + rt)

which implies

p0,t =
1∏t

i=1(1 + ri)

The concepts of compounding and discounting (see
next figure), naturally follow.

More formally, we have:

• Discounting: process of determining present
value of future monetary amount xt.

• Compounding: process of determining the cur-
rent value at time t (in the future) of a monetary
amount x0.

It holds:

PV (xt) =
xt∏t

i=1(1 + ri)

CVt(x0) =

t∏
i=1

(1 + ri)x0

The spot interest rate r̄t for a zero-coupon bond with
maturity t is defined as a geometric average of the per
period forward rate of interest. In formulae:

p0,t =
p0,0

(1 + r̄t)t

1 + r̄t =

[
t∏
i=1

(1 + ri)

] 1
t

Another interesting concept is the yield to maturity, defi-
ned as the unique rate y such that, for a bond with price
p0 at time 0 which yields a series of payment at and a
final payment of value Par it holds:

p0 =

T∑
t=1

at
(1 + y)t

+
Par

(1 + y)T

Options and Financial Strategies

Derivatives are assets whose values mechanically depend
on the value of other financial assets (the underlying).
There are two macro-categories:

• Forward contracts: obligation to purchase (long
position) or sell (short position) the underlying at
a specified future price at a specified delivery date.
Forwards are entered at no cost.

• Option contracts: right to purchase or sell a spe-
cified amount of the underlying at a specified exer-
cise price at or before a specified expiration date.
Options offer an advantage: the transaction does
not occur if it is not profitable to the owner (the one
who is in a long position). Of course, this advanta-
ge comes at a price, i.e. the long position pays an
initial price to get the option. Selling an option im-
plies an obligation, and you receive a compensation
for this.

We first take a deeper look into forward contracts.
They can help shaping risk exposure, for example with:

• Hedging: to insure against market price volatility
(e.g. you have a product that you will sell in a year,
but you fix the price now, as this allows to reduce
potential losses, of course at the price of not ear-
ning more if the value of the underlying increases
to more that the fixed price).

• Speculation: to exploit market price volatility.

More formally, given a delivery price X and a future va-
lue ST at time T , the long position gets ST − X, while
the short position gets X − ST . This means, that if the
underlying now has a value of St and you expect that it
has value ScT at time T you should do the following:

• If ScT > St you should aim to be in the long po-
sition of a forward contract with X < ScT (or in a
short position with X > ScT ).

• If ScT < St you should aim to be in a short position
of a forward contract with X > ScT (or in a long
position with X < ScT ).

We now describe options. An option is a right to purcha-
se/ sell a certain amount of the underlying at (European
option) or before (American option) the expiration date
T at exercise price X. In general, the long position is the
option holder (has the right to exercise the option and
pays a price for this), and the short position is the option
writer (which has an obligation to facilitate the option’s
exercise and gets a compensation for this service). We
distinguish two types of options.
The call (long position has the right to purchase an as-
srt for X at time T ) works as follows: the long position
pays a premium C0 at time 0 and at time T it does the
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following: if ST > X, it gets a payoff of ST −X (and a
profit of ST −X−CVT (C0)), otherwise it gets a payoff of
0 (it does not worth it to pay X to get ST < X) and the
final profit is −CVT (C0). On the other hand the short
position always gets the premium C0 and it has a payoff
of 0 if the long position does not exercise the option (i.e.
when X > ST ) and a payoff of X−ST if the long position
exercises the option (i.e. when X < ST ). The following
figure illustrate the scenario.

On the other hand, the put (where the long position has
the right to sell an asset for X at time T ) works as follo-
ws: the long position pays a premium P0 at time 0 and
at time T it does the following: if ST < X it sells the
underlying and get a payoff of X − ST (which means a
profit of X−ST −CVT (P0)), otherwise the payoff is zero
and the profit −CVT (P0). The short position always ge-
ts the premium P0 and the payoff depends on the choice
of the long position. If the long position exercises the
option, the payoff is ST −X, otherwise it is zero. To get
the profit, we add CVT (P0) to the payoff. The situation
is illustrated next.

Now that we have presented different options, we will
explore some possible strategies to get a positive pro-
fit. First, note that if we have some expectation about
the price development of the underlying we can use ei-
ther bullish strategies (where we generate a profit if
the underlying’s price increases, e.g. long call and short
put) or bearish strategies (where we generate a pro-
fit if the underlying’s price decreases, e.g. long put and
short call). In contrast, if we have no expectation about
price deelopments but we have some ideas regarding the
volatility of the underlying, we can use non-directional
strategies, where we generate a profit depending on the
underlying’s actual volatility. Let’s see some examples.
Protective put: if you want to insure against potential
losses due to decline in stock value, you can buy a long
put on the sock. This strategy guarantees a capped loss
at the price of a lower gain if the stock price increases.

Spread I: wish to take advantage of higher future price
of underlying. Of course you could buy the stock, long a
call or short a put. An alternative is to construct a port-
folio that allows to reduce the risk (i.e. if your prediction
is wrong, you don’t loose too much) at the cost of giving
up part of the profits. A possible bull spread strategy is
buying a long call with strike X1 and premium C0,1 and
a short call with strike X2 > X1 with premium C0,2. Te
results are shown below.

Spread II: alternatively, if you wish to take advantage
of lower future price of the underlying, you could sell the
stock, short a call, or buy a put. Another opportunity is
bearing a spread strategy, which allows to hedge against
the risk that we have wrong expectation on future price
of the underlying. An example could be shorting a call
with strike X1 and premium C0,1 and buying a long call
with strike X2 > X1 and premium C0,2. The situation is
shown below.

Straddle: useful when a large move in stock’s price is
expected, but there is uncertainty about the direction.
In this case, we buy a long call with strike X together
with a long put with strike X. The result is shown below.
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Option Valuation

An arbitrage opportunity is a financial strategy that
yields a sure cash-flow A0 ≥ 0 at time 0 and cash-flow
AT ≥ 0 almost surely at time T and there is at least one
state of the world where one inequality is strict.

• A0 > 0 and AT ≥ 0 almost surely is an arbitrage.

• A0 ≥ 0 and AT ≥ 0 almost surely with
Pr [AT > 0] > 0 is an arbitrage.

If we assume that the market clears out arbitrage
opportunities, we can derive a number of interesting
results.

(a) max [S0 − PV (X), 0] ≤ C0 ≤ S0

(b) max [PV (X)− S0, 0] ≤ P0 ≤ PV (X)

(c) S0 + P0 = X
(1+rf )T

+ C0

(d) Two-State Option Valuation Model: a stock
that sells at S0 and has either value Su1 or Sd1 with
Su1 > Sd1 , a call option with strike X ∈ (Sd1 , S

u
1 ),

and a risk-free asset with yearly interest rate rf .
In absence of arbitrage C0 = αS0 + β, with

α =
Su1 −X
Su1 − Sd1

β =
(Su1 −X)Sd1

(1 + rf )(Sd1 − Su1 )

(a) Upper bound: one portfolio costs C0 and returns
max [ST −X, 0], the other one costs S0 and returns
ST . Assume C0 > S0. Then do the following: sell
a call and buy a stock. We have: A0 = C0−S0 > 0
and AT = ST −max [ST −X, 0] = min [X,ST ] > 0.
Contradiction. Lower bound: one portfolio costs
C0 and returns max [ST −X, 0], another one costs
S0 and returns ST , and the third one costs PV (X)
and return X. Assume C0 < S0 − PV (X). Strate-
gy: sell S0 and buy C0 + PV (X). We have: A0 =
S0−PV (X)−C0 > 0, AT = X+max [ST −X, 0]−
ST = max [0, X − ST ] ≥ 0. Contradiction. C0 ≥ 0
is obvious.

(b) Upper bound: one portfolio costs P0 and returns
max [X − ST , 0], the other one costs PV (X) and
returns X. Assume P0 > PV (X). Strategy: buy
PV (X) and sell P0. We have: A0 = P0−PV (X) >
0, AT = X − max [X − ST , 0] = min [ST , X] ≥ 0.
Contradiction. Lower bound: one portfolio costs
P0 and returns max [X − ST , 0], the second one
costs S0 and returns ST , the third one costs PV (X)
and returns X. Assume P0 < PV (X) − S0. Stra-
tegy: buy the stock and put, sell PV (X). It
holds: A0 = PV (X) − S0 − P0 > 0, AT =
ST + max [X − ST , 0] −X = max [0, ST −X] > 0.
Contradiction. P0 > 0 is obvious.

(c) Similar as before, consider the put, call, stock,
and risk-free asset opportunities. Assume first
S0 + P0 < X

(1+rf )T
+ C0 and find an opportuni-

ty, then do the same for S0 + P0 >
X

(1+rf )T
+ C0.

By contradiction you get the result.

Option valuation depends on multiple factors, as
summarised in the following table.

Finally, a fundamental result in option valuation is the
Black-Scholes Formula. We assume that the stock at
time t denoted S(t) varies as follows:

dS(t) = µS(t) + σS(t)dB(t)

where B(t) is a standard Brownian motion. It holds:

C0 = S0N(d1)−Xe−rTN(d2)

with d1 =
ln(

S0
X +(r+σ2

2 )T

σ
√
T

and d2 = d1 − σ
√
T .

Pricing by Arbitrage

The setting for this chapter is the following. Given two
periods (t = 0, 1), a space Ω that represents the contin-
gent states at time t = 1 : ω ∈ {1, . . . ,Ω} and K assets
k ∈ {1, . . . ,K} available at time t = 0, we define:

• aωk is the value of asset k at time t = 1 in state ω.

• pk is the price of asset k at t = 0.

• A portfolio (zk) is a vector of asset quantities. zk
denoted the quantity of asset k held in the portfolio.

• A market is the data (aωk , pk).

• The price of the portfolio is
∑
k pkzk.

• The value of the portfolio in state ω is
∑
k zka

ω
k .

If an asset k have values aωk independent of ω, we call
if a risk-free asset. We also say that an asset k can be
replicated by a subset of assets, indexed by i ∈ S, if there
exist constants (zi)i∈S such that aωk =

∑
i∈S a

ω
i zi∀ω. In

such a case, the asset k is said to be redundant. We now
look at the concept of complete market.

• Definition: a market (aωk , pk) is complete if for
any asset bω there exist constants (zk) such that
bω =

∑
k zka

ω
k .

• Market are complete when all revenue configura-
tions are replicable through some portfolio.

• In complete markets it has to hold Ω ≤ K.

• A market is complete if and only if the payoff
matrix a (with dimension K × Ω) has rank Ω.

• If a market is complete with K > Ω there are Ω in-
dependent assets. Thus, one can eliminate K − Ω
redundant assets which are linear combinations of
the Ω independent assets.
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An arbitrage portfolio is a portfolio (zk)k∈0,...,K such
that

∑
k a

ω
k zk ≥ 0∀ω and

∑
k pkzk ≤ 0, where at least

one of these Ω + 1 inequalities is strict.

We say that a market is arbitrage free if there is no ar-
bitrage portfolio. A market (aωk , pk) without arbitrage
opportunities satisfies the Law of one price: if for two
assets i and j we have aωi = aωj for all ω, then pi = pj .
If that’s not the case, w.l.o.g. because pi < pj we would
then have an arbitrage opportunity by selling one unit of
asset j and buying one unit of asset i.
The No-Arbitrage Theorem: A market (aωk , pk) is
arbitrage-free if there exist a vector q such that p = Aq
and every component of q is strictly positive. Note that
they may exist several state-price vectors q.
Given a state-price vector (qω)ω∈Ω we define the risk
neutral probability (π∗ω)ω∈Ω with π∗ω = qω∑

ω qω
. We also

define:

• rωk =
aωk
pk

: the return of asset k in ω.

• Using pk =
∑
ω a

ω
k qω we get

E [rωk ] =
∑
ω

π∗ωr
ω
k =

1∑
ω qω

Arrow-Debreu Securities: the Arrow-Debreu securi-
ty aω0

is a vector of dimension |Ω| with a 1 in component
ω0 and zero otherwise. We can show two things:

• If the market is arbitrage free and q is a state-price
vector, then the price of aω0

is qω0
.

• A market that contains all Arrow-Debreu securities
is complete.

Assume an arbitrage free market with state-price vector q
and corresponding risk neutral probabilities π∗. Assume
that this market contains a risk free asset that pays 1 in
all possible states of the world. We denote by p0 =

∑
ω qω

its price and by rf = 1
p0

its return. Then:

• For all assets k in the market we have E [rωk ] = rf .

• If the market contains the Arrow-Debreu security
aω0 its price is qω0 =

∑
ω qω

qω0∑
ω qω

= p0π
∗
ω0

.

Given an arbitrage-free market M = (aωk , pk), define
QM the set of state-price vectors for this market.

• QM is a convex set.

• QM is empty iff M offers arbitrage opportunities.

• QM is reduced to a point iff is complete and does
not offer arbitrage opportunities.

• If q, q′ ∈ QM , then:∑
ω

(qω − q′ω) aωk = 0∀k

For any claim c = (c1, . . . , cΩ) not necessarily replicable
in the market M , the set of prices pc for such a claim
that would not generate arbitrage opportunities is:

{pc|pc =
∑
ω

qωcω for some q ∈ QM}

Moreover:

• This set of no-arbitrage prices is a singleton iff c
is replicable in M .

• If c is not replicable in the market, then adding it
to the market with a price within arbitrage bounds
will reduce the setQM . Its dimension will decrease
by one.

Introduction to the Economic Analysis
of Asset Markets

We start by a simple example with two agent A and B.
Ex-post, there are two state of the world:

• In state ω = 1, agents get income w1
A and w1

B .

• In state ω = 2, agents get income w2
A and w2

B .

We denote with c1A, c
2
A, c

1
B , c

2
B the consumptions of the

agents in their respective state. The goal of the agent is
getting a high consumption. Note, however, that since
we assume that no value can be created out of nothing,

it must hold that:

c1A + c1B = w1
A + w1

B

c2A + c2B = w2
A + w2

B

Of course, the two agents can decide to not trade. The
no-trade situation corresponds to c1i = w1

i , c
2
i = w2

i for
i ∈ {A,B}. The situation can be represented graphically
with an edgeworth box.

In the above picture, we observe the following.

• The no-line risks are where the consumption for a
given agent is equal in both states.

• The lengths of the axis are w1
A +w1

B and w2
A +w2

B

respectively.

In this course, we assume that agents i = A,B aim at
maximizing a utility function Ui : R2

+ → R such that

Ui(c
1
i , c

2
i ) = π1ui(c

1
i ) + π2ui(c

2
i )

where π1 and π2 are respectively the probability of oc-
currence of state 1 and 2, ui : R+ → R is a function
called the utility index. Of course, for each agent, the-
re are multiple c1i , c

2
i with the same value of the utility

function (which is, in general, non-injective). As sho-
wn in the figure below, from the no-trade situation, the-
re might be consumptions where each agent has higher
income compared to the no-trade situation.
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Among the possible allocations, particularly interesting
are the Pareto-optimal ones. An allocation is Pareto-
optimal if and only if there is no alternative feasible out-
come at which every individual in the economy is at least
as well off and some individual is strictly better off. Gra-
phically, Pareto-optimal allocations are the one where
indifferent curves of agents A and B are tangents. Note
that there may be many Pareto-optimal allocations, and
agents may have different preferences about which is the
most interesting one. The contract-curve is the part of
the Pareto set for which both agents do at least as well
as their initial endowments. This point is very impor-
tant because both agents gain from the trade, and the
outcome is Pareto-optimal.
We now change topic and we dive into the concept of
market equilibrium. The setting is that agents, ex-ante,
trade assets on the market. The market equilibrium is
obtained when asset prices are such that individual stra-
tegies are globally compatible, i.e. demand is equal to
supply. We denote with Ziα (with α ∈ {A,B}, i ∈ {1, 2})
the quantities of the respective asset bought/ sold by the
agent. We assume that ex-ante agents has no wealth.
This justifies the constraint p1z

1
i +p2z

2
i = 0. Ex-post, on

state j, the agent consumes wji + zji . Agent i solves the
following:

max
(z1i ,z

2
i )
U i(w1

i + z1
i , w

2
i + z2

i ) subject to p1z
1
i + p2z

2
i = 0

We say that a market is balanced if the following
conditions (known as market clearing conditions) are
satisfied.

z1
A + z1

B = 0

z2
A + z2

B = 0

If we can solve the optimization problem for the in-
dividual’s demand with demands/ supplies that satisfy
the market clearing conditions, we have a market equili-
brium. If a market equilibrium exists, prices are deter-
mined up to a multiplicative scalar. Market equilibrium
satisfy the following properties:

• The market equilibrium generates a Pareto-optimal
allocation.

• Market equilibrium allocations are comonotone.
This is also the case for all Pareto-optimal
allocations.

Choice under uncertainty

Consider Z a set of possible consequences. Assume there
is a finite set Ω = {1, . . . , |Ω|} of possible states of the
world and consider L(Z) the set of lotteries with con-
sequences in Z. A lottery is a list of pairs (xω, πω)ω∈Ω

where πω gives the probability that the state of the world
ω will occur, and xω ∈ Z is the outcome that is realized
when state ω occurs. A compound lottery is a lotte-
ry whose prizes are themselves lotteries. The compound
lottery with parameter λ ∈ [0, 1] consists in playing the
first lottery with probability λ and the second one with
proability 1− λ. The resulting lottery λ ·L+ (1− λ) ·L′
is called mixture operation.
We want to have a theory of preferences defined over
L(Z). A relation of preferences � on L(Z) is a binary
relation which is:

• Complete: for any L,L′ ∈ L(Z) we have L � L′

or L′ � L.

• Transitive: if both L � L′ and L′ � L′′, then
L � L′′.

• Independent: for all L,L′, L′′ and λ ∈ (0, 1)
then L � L′ if and only if λ · L + (1 − λ) · L′′ �
λ · L′ + (1 − λ) · L′′. This is the first axiom of
Von-Neumann and Morgenstern.

• Continuity: if L � L′ � L′′, then there exists
λ ∈ [0, 1] such that L ∼ λ · L+ (1− λ) · L′′.

A relation of preferences is represented by a utility
function V : L(Z)→ R if and only if

L � L′ ⇔ V (L) ≥ V (L′)

Theorem (von Neumann-Morgenstern) If � is
a preference relation on L(Z) that satisfies the pre-
vious axioms, then there exists u : Z → R such
that (xω, πω) � (x̃ω, π̃ω) if and only if

∑
ω πωu(xω) ≥∑

ω π̃ωu(x̃ω) which can also be rewritten as

Eπω [u(xω] ≥ Eπ̃ω [u(x̃ω)]

We denote the average of a lottery L by EL [x] =∑
ω∈Ω πωx

ω. Let δEL[x] the degenerate lottery that gives
the expected pay-off of L with probability one. An agent
is said to be (weakly) risk averse if and only if for all
L ∈ L(Z)

δEL[x] � L

This happens if and only if u is concave.
We say that an agent dislikes increases in risk if and only
if her utility index u is concave. Different possibilities to
define increases in risk are:

• L is riskier than L′ if L′ is SOSD (i.e. L′ second
order stochastically dominates L).

• L is riskier than L′ if L is a mean preserving spread
of L′.

• L is riskier than L′ if L = L′ + ε where E [ε] = 0.

We define a white noise any random variable ε such that
E [ε|L = y] = 0 holds for all y. A risk averse agent will
always prefer a lottery L to L+ ε.

For any lottery L, its certainty equivalent is the
amount eL ∈ R such that δeL ∼ L. In other words,
eL is the amount of money for which the individual is
indifferent between the gamble L and a fixed amount of
money. Formally, for a VNM agent with utility index u,
we have u(eL) = EL [u(x)]. Note that for a risk averse
agent EL [x] − eL > 0, while for a risk neutral agent
EL [x] = eL.
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For any L, the risk premium is πL = EL [x] − eL.
Of course, we have u(EL [x] − πL) = EL [u(x)]. A ri-
sk neutral agent associates risk zero to any lottery L,
while a (strictly) averse agent a positive risk to any
non-degenerate lottery.

Consider x ∈ R and the lottery L = x(1 + ε), where ε is
a small noise with E [ε] = 0. We define:

• The relative risk premium πr(x) as

πr(x) = −1

2

xu′′(x)

u′(x)
E
[
ε2
]

• The relative risk aversion coefficient Rr(x) =

−xu
′′(x)
u′(x) . So we have πr(x) = − 1

2Rr(x)E
[
ε2
]
.

Some notable examples are:

• If u(x) = 1−e−kx
k , then Ra(x) = k and Rr(x) = kx.

• If u(x) = x1−γ

1−γ , then Ra(x) = γ
x and Rr(x) = γ.

• If u(x) = log(x), then Ra(x) = 1
x and Rr(x) = 1.

Consider agents A and B with VNM preferences re-
presented by smooth utility indices uA and uB . It is
equivalent to say:

1. For any lottery L the certainty equivalent defined
by A’s preferences is smaller than or equal to the
one defined by B’s.

2. For any lottery L the risk premium defined by
B’s preferences is smaller than or equal to the one
defined by A’s.

3. uA is more concave than uB . There exists an
increasing concave function φ such that uA =
φ(uB).

4. For any x we have

RAa (x) = −u
′′
A(x)

u′A(x)
≥ −u

′′
B(x)

u′B(x)
= RBa (x)

It is then said that A is at least as risk averse as B.

Demand for risk

Consider an agent with wealth W who can invest at time
zero in a risk-free asset with return r0 and in a risky asset
with random return r̃. If the agent invests an amount α
in the risky asset, he gets in period 1:

(W − α)r0 + α · r̃ = Wr0 + α(r̃ − r0)

With ω = Wr0 and R̃ = r̃−r0 the agent problem rewrites

max
a

V (α) = E
[
u(ω + αR̃)

]
When is the demand for risky asset positive? Let’s start
deriving some properties of V (α):

V ′(α) = E
[
R̃u′(ω + αR̃)

]
V ′′(α) = E

[
R̃2u′′(ω + αR̃)

]
Thus, if the agent is risk averse, V is concave. V ′ is
therefore non-increasing. This gives two results:

• If E
[
R̃
]
> 0, the agent should purchase some risky

asset (no matter how risk averse it might be).

• If E [r̃] ≤ r0, then it is never optimal to hold a
positive quantity of the risky asset.

To see this, consider V ′(0) = E
[
R̃u′(ω)

]
= E

[
R̃
]
u′(ω).

But how much should the agent invest? The first order
condition V ′(α∗) gives

E
[
R̃u′(ω + α∗R̃)

]
= 0

which has solution under specific assumptions on R̃ and
u. For example, if R̃ is always of the same sign, the-
re is no interior solution. And even if the agent is risk
averse and R̃ changes sign, there may not be an interior
solution. In the following, we assume that an interior so-

lution exists. Moreover, we will assume that E
[
R̃
]
> 0

so that the solution is positive (i.e. α∗ > 0).

Small risks: assume R̃ = ε + R̃′ with E
[
R̃′
]

= 0 and

consider a small ε > 0. Denote by α(ε) the solution to

max
α

E
[
u(ω + (ε+ R̃′)α)

]
We have FOC:

E
[
(ε+ R̃′)u′(ω + (ε+ R̃′)α(ε))

]
= 0

We know α(0) = 0. Then using a Taylor expansion we
have α(ε) ' α(0) + α′(0)ε = α′(0)ε and

u′(ω + (ε+ R̃′)α(ε)) = u′(ω + α(ε)R̃)

' u′(ω) + u′′(ω)α(ε)R̃

' u′(ω) + u′′(ω)εα′(0)R̃

The FOC gives

E
[
(ε+ R̃′)(u′(ω) + εα′(0)R̃u′′(ω))

]
= εu′(ω) + ε2α′(0)E

[
R̃
]
u′′(ω) + εα′(0)E

[
R̃R̃′

]
u′′(ω)

= εu′(ω) + εα′(0)E
[
R̃′2
]
u′′(ω) = 0

that is

α′(0) =
1

E
[
R̃′2
] · 1

Ra(ω)

and

α ' εα′(0) =
E
[
R̃
]

V ar
[
R̃
] 1

Ra(ω)

The share of wealth invested in the risky asset is

α

ω
'

E
[
R̃
]

V ar
[
R̃
] 1

Rr(ω)
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Quadratic utility indices: assume u(c) = c − β
2 c

2

with c = ω + αR̃. Then the FOC writes

(1− βω)E
[
R̃
]
− αβE

[
R̃2
]

= 0

So

α =
1− βω
β

E
[
R̃
]

E
[
R̃2
]

Thus, the amount invested in the risky asset (α) only
depends on the mean and the variance of the differen-
ce between the return to the risky and the safe asset
(R̃ = r̃ − r0).

Hyperbolic absolute risk aversion: consider the
HARA utility index with c = ω + αR̃ and u(c) =
γ

1−γ (b+ c
γ )1−γ . Combining u′(c) with the FOC gives

E
[
R̃(ω + αR̃+ bγ)−γ

]
= 0

⇔

E

[
R̃(1 +

α

(ωγ + b)

R̃

γ
)−γ

]
= 0

Denote by a the solution of E
[
R̃(1 + a R̃γ )−γ

]
= 0. We

have
a =

α
ω
γ + b

⇒ α = a(
ω

γ
+ b)

Two important special cases of HARA are:

• CARA (γ →∞): α is independent of ω.

• CRRA (b = 0): α is proportional to ω.

We now show a few important results. First, we ha-
ve that the demand for the risky asset decreases
with risk aversion.

To see this, consider u1 = φ(u2) with φ concave. Assume

that α1 and α2 solve

E
[
R̃u′1(ω + α1R̃)

]
= 0

E
[
R̃u′2(ω + α2R̃)

]
= 0

i.e. V ′1(α1) = v′2(α2) = 0. The concavity of φ implies:

• If R ≥ 0 we have u2(ω+αR) ≥ u2(ω) which implies
Rφ′(u2(ω + αR)) ≤ Rφ′(u2(ω)).

• If R < 0 we have u2(ω+αR) < u2(ω) which implies
Rφ′(u2(ω + αR)) ≤ Rφ′(u2(ω)).

Wrapping up, ∀α ∈ [0, 1] and ∀R ∈ R

Rφ′(u2(ω + αR)) ≤ Rφ′(u2(ω))

Therefore,

V ′1(α2) = E
[
R̃u′1(ω + α2R̃)

]
= E

[
R̃u′2(ω + α2R̃)φ′(u2(ω + αR̃))

]
≤ E

[
R̃u′2(ω + α2R̃)φ′(u2(ω))

]
= φ′(u2(ω))V ′2(α2)

= 0 = V ′1(α1)

And, since V is concave, α1 ≤ α2.

Mean Variance Analysis

We assume that the preferences over portfolio are increa-
sing wrt expected return and decreasing wrt variance. In
other words, given returns, we minimize the variance.
Reciprocally, given variance, the return is maximized.
This leaves one parameter free, which is interpreted as
the agents’ risk aversion parameter, which determines
their choice upon the risk/ reward trade-off.
The general setting for this chapter is the following. We
consider a probability space Ω, where ω ∈ Ω is a state
of the world. We denote by ãk = (aωk )ω∈Ω the random
payoff of asset k and by pk its price. Denote:

• R̃k = (Rωk )ω∈Ω the gross return of asset k: Rωk =
aωk
pk

. We have: R̃k ∈ R|Ω|×1.

• Rk is a real number defined as E
[
R̃k

]
.

• R = (R1, . . . , Rk)T ∈ RK×1 and R̃ =
(R̃1, . . . , R̃k)T ∈ R|Ω|×K .

• The matrix Σ ∈ RK×K is the covariance matrix of
asset returns. We denote with σkl the entry of Σ
on the k-th row and l-th column.

We have:

Ep
[
R̃p

]
= xTR

V arπ

[
R̃p

]
=
∑
k,l

σklxkxl = xTΣx

Minimum variance portfolio with two stocks:
given R1, R2, σ

2
1 , σ

2
2 , ρ12, how does the investor chose

x1 to minimize the variance of the portfolio? The
optimization problem to be solved is the following:
minimize

1

2
σ2
p = minx2

1σ
2
1 + 2x1x2σ1σ2ρ12 + x2

2σ
2
2

s.t. x1 + x2 = 1. By setting the derivative to zero we
get:

xMV P
1 =

σ2
2 − σ1σ2ρ12

σ2
1 + σ2

2 − 2σ1σ2ρ12

xMV P
2 =

σ2
1 − σ1σ2ρ12

σ2
1 + σ2

2 − 2σ1σ2ρ12

σ2,MV P
p =

σ2
1σ

2
2(1− ρ2

12)

σ2
1 + σ2

2 − 2σ1σ2ρ12

Note that:

• With K assets, identical variances (σ2
1 = · · · =

σ2
K = 0) and independence (ρjk = 0∀j 6= k), the

optimal minimum variance portfolio composition
is such that the same amount is divided in each
stock and we get σ2,MV P

p =
σ2
1

k . This is the idea of
diversification.

• With perfectly negative correlation (ρjk = −1∀j 6=
k), we can obtain a portfolio with no risk.
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In the general case, the problem of the investor can be
written as

1

2
σ2 = min

1

2

∑
k,l

σklxkxls.t.∑
k

xkRk = m∑
k

xk = 1

or, in matrix form

1

2
σ2 = min

1

2
xTΣxs.t.

xTR = m

xT~1 = 1

Using Lagrange multipliers and defining Σ−1 = Γ =
(γkl)(k,l)∈{1,...,K}2 we get:

xk = λ
∑
l

γklRl + µ
∑
l

γkl(i.e x = λΓR+ µΓ~1)

c := RTΓR

b := RTΓ~1

d := ~1TΓ~1

∆ := dc− b2

λ =
dm− b

∆

µ =
−bm+ c

∆

σ2 = λm+ µ =
dm2 − 2bm+ c

∆

(
∆

d
)σ2 − (m− b

d
)2 =

∆

d2

The global minimum variance portfolio is the
portfolio xG ∈ RK with smallest variance. We get:

xG,k =
1

d

∑
l

γkl

mG =
b

d

σ2
G =

1

d

The mutual fund theorem says that given two fron-
tier portfolios xA and xB , all efficient portfolios can be
obtained by mixing xA and xB in different proportions.
The linear combination of efficient portfolios is always
efficient.

Capital Asset Pricing Model

We now extend the framework of the previous section
to the case of a portfolio comprising one safe asset x0

and K risky assets r−0 = (x1, . . . , xK)T . The investor’s
program is:

1

2
σ2 = min

1

2

∑
k,l

σklxkxl

x0R0 +
∑
k

xkRk = m

x0 +
∑
k

xk = 1

By using the FOC we get the result xk = λ
∑
l γ
kl(Rl −

R0) (i.e. x−0 = λΓ(R − R0
~1)) and x0 = 1 −

∑
k xk.

Therefore, we see that for any efficient portfolio, the
sub-portfolio of risky assets x−0 is proportional to∑
l γ
kl(Rl −R0).

We define the tangent portfolio xT as the only efficient
portfolio that does not use the safe asset. So we have
xT,0 = 0. By using the previous result we also obtain
∀k ∈ {1, . . . ,K}

xT,k =

∑
l γ
kl(Rl −R0)∑

j,l γ
jl(Rl −R0)

Moreover, we have

xk = λ
∑
j,l

γjl(Rl −R0)xT,k

that is,

x−0 = λ
∑
j,l

γjl(Rl −R0)xT

Hence, the investor’s holdings of risky assets are pro-
portional to this tangent portfolio. Therefore, for any
efficient portfolio, we have

x = αy0 + (1− α)xT

where yT0 = (1, 0, . . . , 0) and xTT = (0, xT,1, . . . , xT,K) is
the tangent portfolio. How do we choose α? We have:

m = α ·R0 + (1− α)RT = (1− α)(RT −R0) +R0

σ = (1− α)σT

=⇒ m = (
RT −R0

σT
)σ +R0

Mutual fund theorem II: In the presence of a safe as-
set, efficient portfolios are a combination of the risk-free
asset and the tangent portfolio. The exact combination
is determined by m.
Corollary: All efficient portfolios are located on a
real line in the (σ,m) plane; this line is called capital
allocation line.

For any portfolio with expected return m and standard
deviation σ, we define the Sharp ration as

m−R0

σ

We now introduce the Capital Asset Pricing Model (CA-
PM) which adds two key assumptions to the Markovitz
model:

Soel Micheletti



• Complete agreement: all agents agree on both m
and Σ.

• Borrowing and lending at a risk-free rate is
available to all investors.

Under these assumptions, all investors see the same op-
portunity set and hold the same tangent portfolio of risky
assets, which must therefore be the value-weight market
portfolio. The CAPM rests on the notion of market port-
folio, which is simply the aggregation of the economy’s
financial assets. The capital allocation line is known to
all investors, as it can be read in the market.

Theorem (CAPM): at equilibrium, the expected
return of asset k satisfies

Rk −R0 =
Covπ(R̃k, R̃M )

V ar(R̃M )︸ ︷︷ ︸
βk

(RM −R0)

In words, the risk premium associated with asset k is
given by the product of the asset’s β with the risk
premium on the market portfolio.

Derivation of the theorem: from the mutual fund theo-
rem we know that for any efficient portfolio

∑
k σklxk =

λ(Rl − R0). We now define the market portfolio zM =
(zM,0, . . . , zM,k) as the portfolio consisting of all assets
held in the economy. For k = (0, . . . ,K), the share of
wealth held in asset k is given by

xM,k =
pkzM,k∑
κ pκzM,κ

Since the market is assumed to be efficient, we have∑
k

σklxM,k = λ(Rl −R0)

Moreover we have

R̃M =
∑
κ

xM,κR̃κ

Covπ(R̃l, R̃M ) =
∑
k

xM,kCovπ(R̃k, R̃l)

=
∑
k

σklxM,k

Hence, using
∑
k σklxM,k = λ(Rl − R0) we obtain

Covπ(R̃l, R̃M ) = λ(Rl − R0). Multiplying both sides
by xM,l and summing, one gets∑

l

xM,lCovπ(R̃l, R̃M ) = λ(RM −R0)

or also

V ar(R̃M ) = λ(RM −R0)

Remarks:

• We call idiosyncratic a risk which has zero corre-
lation with the market. According to the CAPM
relation, an idiosyncratic risk is worth zero pre-
mium. This does not mean that the risk is liked
by all investors, it just means that there is zero
net supply or demand in the economy for that ri-
sk. Note that at equilibrium, no agent bears any
idiosyncratic risk, as every agent then detains a
combination of the market portfolio and the safe
asset.

• We call a systematic risk a risk which has correla-
tion one to the market risk and which can not be
avoided when investing in the market.

– The CAPM relations show that, for the same
expected values, assets which are negatively
correlated with the market have a greater pri-
ce (and, therefore, a lower expected return).
Indeed there is a net demand for those assets
in the economy, as they insure their holders
against systematic risk.

– Conversely, assets which are positively corre-
lated with the market are in net supply: peo-
ple dislike them as they increase their syste-
matic risk, thus ask for a higher risk premium
to carry them.

Risk Sharing and Insurance

We start by presenting the setting for this section. We
have a single good and two dates. At date t = 0 the

contingent exchange contracts are signed. At date t = 1
the contracts are settled. Moreover:

• We consider a probability space Ω. ω ∈ Ω is a state
of the world.

• πω with
∑
ω πω = 1 is the known probability

distribution on Ω.

• If ω occurs, a total amount of eω resources is shared
across agents (here e is just a notation, it does not
have anything to do with the natural number).

• There is a finite number of agents with VNM pre-
ferences and are risk averse. The utility index
of agent i is denoted ui and satisfies the Inada
condition

lim
c→0

u′i(c) =∞

Definition: an allocation c = (cωi )1≤i≤l,ω∈Ω with cωi ≥
0 is the specification of a contingent assumption plan for
all the individuals i in each state of the world.
Definition: an allocation is feasible if in each state ω,
total consumption equals total resources, i.e.

∀ω
l∑
i=1

cωi = eω

Definition: an allocation is Pareto optimal if it is fea-
sible and if there is no other feasible allocation c̃ such
that ∀i ∈ {1, . . . , l}

Eπ [ui(c̃i)] ≥ Eπ [ui(ci)]

with at least one strict inequality.

Proposition (Borch): if all agents are strictly risk averse,
and have identical beliefs, then for any Pareto-optimal
allocation,

∀i ∈ {1, . . . , l}, eω = eω
′
⇒ cωi = cω

′

i
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A feasible allocation c such that cωi > 0 is Pareto optimal
if and only if there are nonnegative weights (λi)1≤i≤l
and (µω)ω∈Ω such that ∀ω ∈ Ω and ∀i ∈ {1, . . . , l}

λiu′i(c
ω
i ) = µω

This condition can be checked as follows:

∀i 6= j
u′i(c

ω
i )

u′j(c
ω
j )

=
λj
λi

∀ω 6= ω′
u′i(c

ω
i )

u′i(c
ω′
i )

=
µω

µω′

Corollary 1: assuming that all agents are risk aver-
se, for any Pareto-optimal allocation the cωi and eω are
comonotonic, i.e.

∀i∀(ω, ω′) ∈ Ω2eω ≥ eω
′
⇔ cωi ≥ cω

′

i

Corollary 2: assuming that there is a risk-
neutral agent and that the allocation (ci)1≤i≤l is
Pareto-optimal, we have

∀(ω, ω′) ∈ Ω2cωi = cω
′

i

Risk Sharing and Asset Pricing in a
Market Equilibrium

We start with the setting of the chapter.

• Ω is a probability space. ω ∈ Ω is a state of the
world.

• We have I agents living in two periods.

• Endowments for each agent i.

– At time t = 0, deterministic endowment e0
i .

– At time t = 1, random endowments ẽi =
(eωi )ω∈Ω.

• Consumption for each agent i.

– At t = 0, c0i .

– At t = 1, c̃i = (cωi )ω∈Ω.

• Let’s denote C̃i = (c0i , c̃i).

The goal is maximizing

Ui(C̃i) = ui(c
0
i ) + δEπ [vi(c̃i)]

where we assume vi(c) = c−αic2. In the market there is
a risk free asset and K risky assets. This introduces the
following budget constraints for all ω:

c0i = e0
i −

z0
i

1 + r
−

K∑
k=1

pkz
k
i

cωi = eωi + z0
i +

K∑
k=1

zki a
ω
k

The FOC for the optimization problem yield:

u′i(c
0
i ) = (1 + r)δE [v′i(c̃i)]

pku
′
i(c

0
i ) = δE [ãkv

′
i(c̃i)]

which can be combined to

(1 + r)pkE [v′i(c̃i)] = E [ãkv
′
i(c̃i)]

= E [ãk]E [v′i(c̃i)] + Cov(ãk, v
′
i(c̃i))

Using v′i(c) = 1 − 2αic we get Cov(ãk, v
′
i(c̃i)) =

−2αiCov(ãk, c̃i) and

1

2αi
E [v′i(c̃i)] (E [ãk]− (1 + r)pk) = Cov(ãk, c̃i)

Using c̃i = ẽi+z
0
i +zTi ã and denoting by Σ the covariance

matrix of a, we get

Σ · zi = −Cov(ã, ẽi) +
1

2αi
E [v′i(c̃i)] (E [ã]− (1 + r)pk)

Define by T ai the absolute risk tolerance of investor i:

T ai (c) = − v
′
i(c)

v′′i (c)

Moreover, define the aggregate risk tolerance

T a(cM ) =
∑

i = 1lT ai (ci)

Since in the case of v′i(c) is linear, we have E [v′i(c̃i)] =
v′i(E [c̃i]) and v′′i (c) = −2αi. Therefore the formula above
becomes

Σ · zi = −Cov(ã, ẽi) + T ai (E [c̃i]) (E [ã]− (1 + r)p)

Note that
∑l
i=1 zi = 0, which implies

∑l
i=1 c

ω
i =: cωM =

eωM :=
∑l
i=1 e

ω
i . We get:

Σ

(
l∑
i=1

zi

)
=

l∑
i=1

(T ai (E [c̃i]) (E [ã]− (1 + r)p)− Cov(ã, ẽi))

which implies (exploiting that for quadratic utility∑l
i=1 T

a
i (E [c̃i]) = T a(E [ẽM ]))

0 = T ai (E [ẽM ]) (E [ã]− (1 + r)p)− Cov(ã, ẽM )

We hence derived the following fundamental result.

The consumption base CAPM: for every asset k =
1, . . . ,K

pk =
1

1 + r

(
E [ãk]− Cov(ẽM , ãk)

T a(E [ẽM ])

)
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