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e provide insights into development and progression of disease, 1.0 | 0.0004 -
® design appropriate interventions.

=» There is a wide scope for improvements in GRN inference:
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% We solve these by employing a scalable matrix factorization and
interpretable linear approach that integrates biological domain 0.4 -
knowledge for better accuracy.
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=» GIRAFFE edge signs indicate activating (positive sign) or inhibiting (negative sign)
regulation. We used interventional TFKO data to validate GIRAFFE interpretation.
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0-27 % GIRAFFE effectively discriminates activating from inhibiting regulation.
MODEL DEVELOPMENT % New opportunities to better understand biological phenomena in case-control studies
00 - | with GRNs, as distinguishing activating from inhibiting regulation yields larger differences
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=¥ In high-dimensional datasets, GRN inference as matrix factorization is an
underdetermined problem.

* GIRAFFE = Gene-level Inference of Regulatory effects As Factorization of
Functions of Expressions enforces alignment with prior biological
knowledge to overcome this issue. and it effectively finds a biologically
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