

Soel Micheletti^{1, 2}, Alexander Marx², Julia Vogt², John Quackenbush^{1,3, 4}, Jonas Fischer¹, Panagiotis Mandros¹

⁻ Harvard T.H. Chan School of Public Health (Boston, MA), ² ETH Zurich (Zurich, Switzerland), ³ Dana-Farber Cancer Institute (Boston, MA), ⁴ Channing Division of Network Medicine, Brigham and Women's Hospital (Boston, MA).

OBJECTIVES

- \rightarrow Inference of Gene regulatory Networks (GRN) is essential to:
 - understand important cellular processes,
 - provide insights into development and progression of disease,
 - design appropriate interventions.
- \rightarrow There is a wide scope for improvements in GRN inference:
 - **1** Accuracy: GRN inference on large and noisy human data is complex, and scores around the random baseline are often reported.
 - **2** Interpretability: distinguishing activating from inhibiting regulation opens avenue for discovery in case-control studies.
 - **3** Scalability: scaling up beyond a few hundreds genes enables proper validation on human aata
- \bigstar We solve these by employing a scalable matrix factorization and interpretable linear approach that integrates biological domain knowledge for better accuracy.

SUPPLEMENTAL INFORMATION

 \leftarrow **Thesis** (May, 2023) $\leftarrow \text{References \& acknowl} \\ \text{Contact information} \rightarrow$ \leftarrow References & acknowledgements GitHub repo \rightarrow

-			

GENE-LEVEL INFERENCE OF REGULATORY EFFECTS AS FACTORIZATIONS OF FUNCTIONS OF EXPRESSIONS (GIRAFFE)

OTTER) perform significantly better.

ETHzürich