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Objectives

➜ Inference of Gene regulatory Networks (GRN) is essential to:
• understand important cellular processes,
• provide insights into development and progression of disease,
• design appropriate interventions.

➜ There is a wide scope for improvements in GRN inference:
1 Accuracy : GRN inference on large and noisy human data is complex, and scores around

the random baseline are often reported.
2 Interpretability : distinguishing activating from inhibiting regulation opens avenue for

discovery in case-control studies.
3 Scalability : scaling up beyond a few hundreds genes enables proper validation on human

data.

✮ We solve these by employing a scalable matrix factorization and
interpretable linear approach that integrates biological domain
knowledge for better accuracy.

Model development

➜ In high-dimensional datasets, GRN inference as matrix factorization is an
underdetermined problem.

✮ GIRAFFE = Gene-level Inference of Regulatory effects As Factorization of
Functions of Expressions enforces alignment with prior biological
knowledge to overcome this issue, and it effectively finds a biologically
meaningful solution by minimizing the following objective:

arg min
R,A≥0

α||Y −R · A||2F (Reconstruction error)

+ β||RT ·R− P ||2F (PPI projection)
+ γ||R ·RT − C(Y )||2F (Co-expression projection)
+ δ||A · AT − P ||2F (TFs cooperation term)
+ λ||R||2F , (Regularization)

where {α, β, γ, δ} are tuned with a loss rebalancing approach that ensures that
all objectives are satisfied.
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Improved regulation estimates in-silico

✮ For prior reliability ≥ 60%, methods incorporating PPI (GIRAFFE, PANDA,
OTTER) perform significantly better.

✮ GIRAFFE significantly outperforms currently used methods (e.g. GENIE3,
WGCNA, etc), and it is the most robust prior-based method.

Improved GRN inference in multiple cell lines

➜ Tested GRN inference methods using ChIP-seq data as ground-truth.
✮ GIRAFFE achieves the highest scores across all tissues, showing that it is able to better

capture the heterogeneity of cellular processes in different tissues.
✮ GIRAFFE is at least five times faster, potential to scale up with the next generation

of genome-wide data and providing significant advantage in GRN inference.
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Interpretable: regulation sign on yeast

➜ GIRAFFE edge signs indicate activating (positive sign) or inhibiting (negative sign)
regulation. We used interventional TFKO data to validate GIRAFFE interpretation.

✮ GIRAFFE effectively discriminates activating from inhibiting regulation.
✮ New opportunities to better understand biological phenomena in case-control studies

with GRNs, as distinguishing activating from inhibiting regulation yields larger differences
for sign changing TF-gene interactions.

Analysis of liver hepatocellular carcinoma (LIHC)

✮ GIRAFFE scales to 25000+ genes, while remaining predictive and interpretable.
✮ GIRAFFE validates known drivers of LIHC and facilitates the discovery of

biologically meaningful pathways.


