ETHzürich

AI Center Projects in Machine Learning

Causal Discovery via Conditional Divergence

Soel Micheletti, Yunshu Ouyang, Alexander Hägele Department of Computer Science, ETH Zurich

1 Introduction

4 Results & Discussion

Distinguishing cause and effect is a fundamental problem in science. The most elementary bivariate case, however, is already highly challenging using solely observational data [5].

Formally, given two random variables X and Y, we want to distinguish between three cases:

1. X causes Y (noted $X \rightarrow Y$).

 $2. X \leftarrow Y.$

Novel Divergence Measures

AUROC of divergence measures for different datasets

CCS	0.744	0.905	0.960	0.897	0.613	0.685	0.566	0.584
CHD	0.750	0.914	0.976	0.905	0.627	0.676	0.580	0.574
CKL	0.744	0.910	0.955	0.893	0.604	0.687	0.575	0.584

3. X and Y are not causally related (either because they are independent or because of confounding phenomena).

The central actor of our analysis is CDCI [1], a novel algorithm that achieves stateof-the-art performance. Our contributions include the proposal of two extensions, and an empirical performance analysis in the presence of hidden confounders. We release an open source package available on PyPI [4].

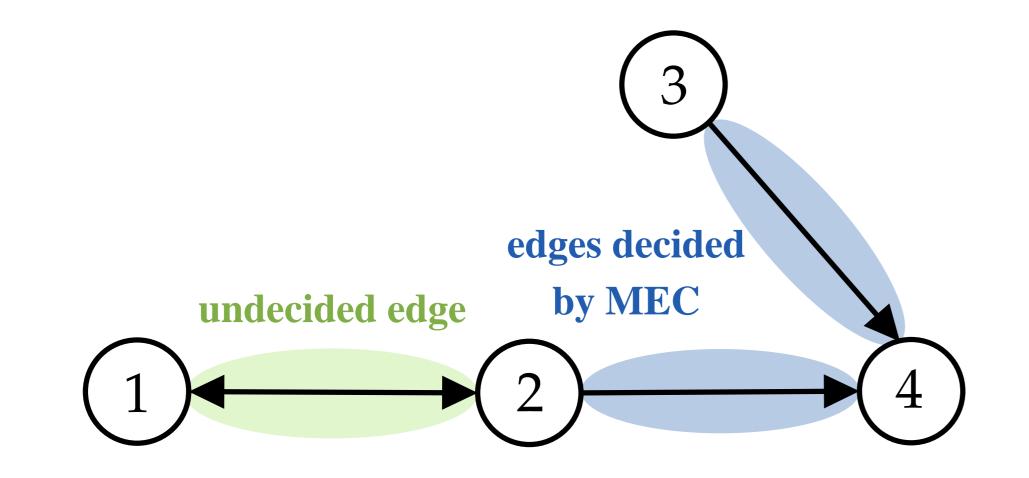


Figure 1: An example graph with one undecided edge in the MEC. CDCI can help distinguish the edge direction based on conditional divergence of variables.

2 Method Overview

CDCI relies on the fundamental assumption that if $X \rightarrow Y$, then the conditional distribution Pr[Y|X = x] is invariant for different values of x [2, 3, 6]. Define the

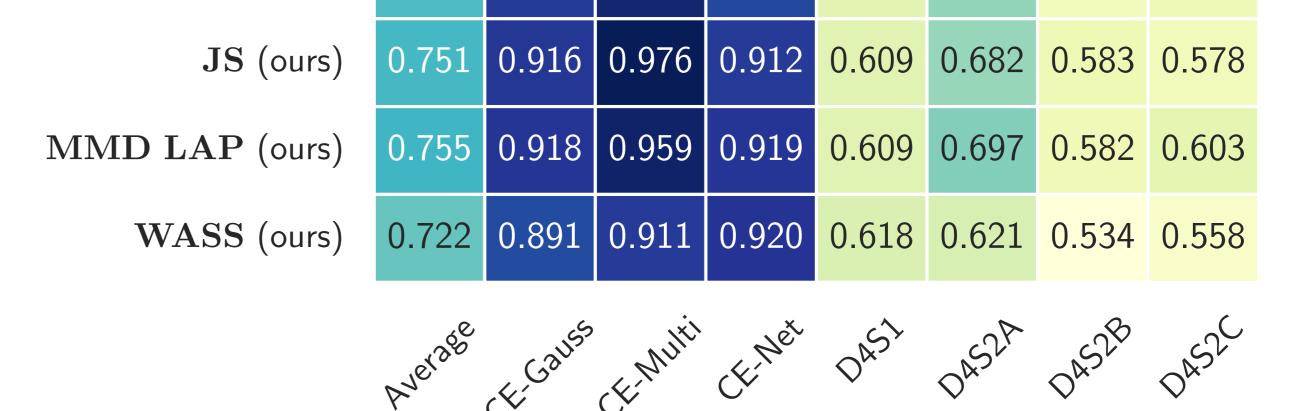
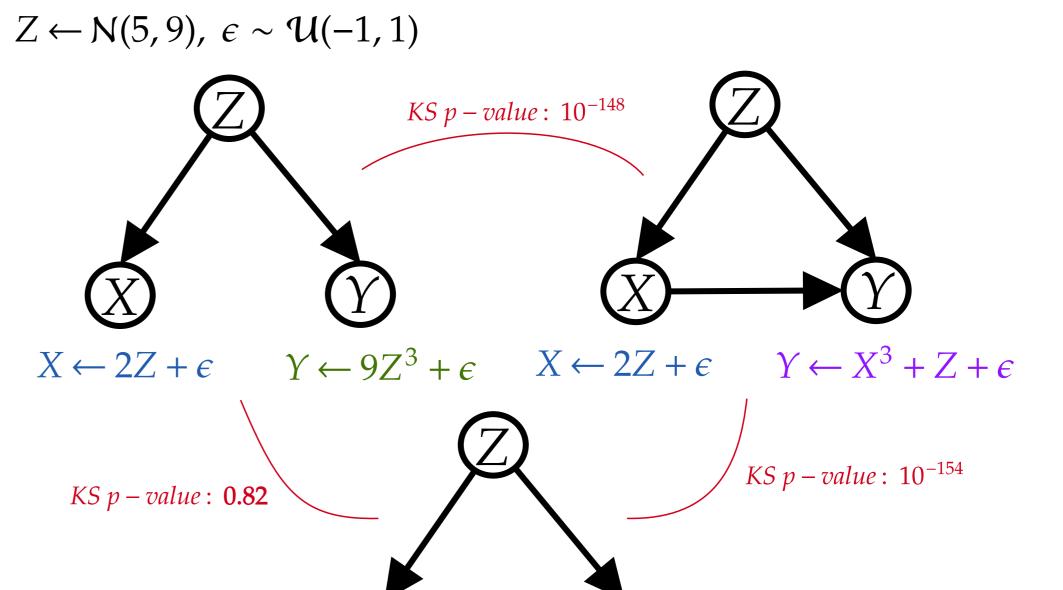


Figure 2: Performance of multiple divergence measures for CDCI on different datasets. Confounding Experiment



Normalized Conditional Divergence (NCD):

$$NCD_D(Y|X) := \mathbb{E}_{x \sim P[X]} \quad [D(P[\hat{Y}|X=x], P[\hat{Y}])]$$
(1)

where D is a valid probability distance measure and \hat{Y} is a standardized conditional distribution of Y given X = x.

Algorithm 1 The Conditional Divergence based Causal Inference (CDCI) algorithm for causal direction prediction based on conditional distribution divergence. **Input:** An i.i.d. bivariate joint distribution P(X, Y), and a probability distance D. **Output:** The causal score $C_{X \rightarrow Y}$ and direction. 1. Compute the conditional divergences for both directions using the probability distance D, as in Equation 1:

 $C_{X|Y} := NCD(X \mid Y) \text{ and } C_{Y|X} := NCD(Y \mid X)$

2. Compute the causal score:

$$C_{X \to Y} \coloneqq C_{X|Y} - C_{Y|X}$$

3. Output the causal score $C_{X \rightarrow Y}$ and

$$\begin{array}{ll} \text{direction} & \coloneqq \left\{ \begin{matrix} X \to Y & \quad \text{if } C_{X \to Y} > 0 \\ Y \to X & \quad \text{if } C_{X \to Y} < 0 \\ \text{Non-causal} & \quad \text{if } C_{X \to Y} = 0 \end{matrix} \right. \end{array}$$

$$X \leftarrow Y^{1/3} - (9^{1/3} - 2)Z + \epsilon \qquad Y \leftarrow 9Z^3 + \epsilon$$

Figure 3: Different confounding sets show that CDCDI cannot, as claimed, distinguish confounding from causation.

5 Conclusion

Strong points:

- No reliance on strong restricting assumptions
- Simple idea & implementation
- Nonetheless good performance

Weak points:

- No verified or provable theory
- False claims about confounding

Contributions: SM: implemented new divergence measures, PyPi package and investigated hidden confounder case; YO: performed kernel search for MMD, did ablation study with diff. binning strategies; AH: made plots and illustrations and prepared poster; all 3 were involved in reproduction of code and results.

References

3 Project Scope & Goals

- Reproduction of results and code
- Simple implementation & reproducible \checkmark
- Extension to novel divergence measures
- Jensen-Shannon (JS), Maximum-Mean (MMD), Wasserstein (+ others) 🗸
- Refuting claim: Distinguish between confounding and causation
- -Counter Example (see Fig. 3) \checkmark

• Ablation study: rationale of binning the conditionals \checkmark

[1] Bao Duong and Thin Nguyen. Bivariate causal discovery via conditional divergence. In *First Conference on Causal Learning and Reasoning*, 2022.

- [2] José AR Fonollosa. Conditional distribution variability measures for causality detection. In *Cause Effect Pairs in Machine Learning*, pages 339–347. Springer, 2019.
- [3] Dominik Janzing and Bernhard Schölkopf. Causal inference using the algorithmic markov condition. *IEEE Transactions on Information Theory*, 56(10):5168–5194, 2010.
- [4] Soel Micheletti. Conditional Divergence based Causal Inference. https://pypi.org/project/cdcicausality/, 2022. [Online; accessed 24th May 2022].
- [5] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf. Distinguishing cause from effect using observational data: methods and benchmarks. *The Journal of Machine Learning Research*, 17(1):1103–1204, 2016.
- [6] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identification and confidence intervals. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 78(5):947–1012, 2016.