
ETH Zurich

Department of Computer Science

Parallel Programming

Author:
Soel Micheletti

Spring 2020

Preface

This script is a summary of the ETH Course Parallel Programming. First of all, I would like to acknowledge
Lasse Meinen to give me access to the repository of his PVK Skript, a very good source from where I took part
of this summary. Some parts are slightly more formal than what is required in order to be succesful in this
course, feel free to skip some proofs if your primary concern is the exam preparation. If you find any error or
you have any suggestion, don’t hesitate to contact me at msoel@ethz.ch: I’m happy to hear your feedbacks!

Contents

Contents ii

1 Introduction 1
1.1 Theoretical Perspective . 2
1.2 Threads . 2
1.3 Bad Interleavings and Data Races . 5

Other Models . 7

2 Parallelism 9
2.1 Performance . 9

Amdahl’s Law . 9
Gustafson’s Law . 10

2.2 Pipelining . 11
2.3 A typical example of parallel programming: the divide and conquer paradigm 14

Task Graphs . 15
Executor Service . 16
The Fork and Join Framework . 18

2.4 A taste of parallel algorithms . 19

3 Concurrency 21
3.1 A Teaser . 21
3.2 Mutual exclusion . 23
3.3 Mutex Implementation . 26

Peterson Lock . 27
Filter Lock . 28
Bakery Algorithm . 31
Spinlock . 32

3.4 Locks: an high level perspective . 34
Semaphores . 36
Barriers . 37
Producer Consumer Pattern . 38
Monitors . 39
Readers-Writers Lock . 41

3.5 Lock granularity . 44
Fine-Grained Locking . 45
Optimistic Locking . 46
Lazy Locking . 47

3.6 Atomic Operations . 48
3.7 Transactional Memory . 51

4 Other topics 54
4.1 Linearizability and Sequential Consistency . 54
4.2 Volatile Fields . 57
4.3 Consensus . 59

Atomic Registers . 60
4.4 Parallel Sorting . 63

4.5 Skip List . 65
Insertion . 66
Searching . 67
Deletion . 67

4.6 Message Passing . 67
Message Passing Interface . 68
Point-to-Point Communication . 69
Group Communication . 70

Introduction 1
In the past, people used to code sequential programs without concerning
too much about performance. Better said, they were concerned with the
efficiency of their algorithms, but not on how to implement them on
hardware. This was a consequence of Moore’s Law, i. e. the observation
that the number of transistors doubles every two years and hence the
same version of a sequential program automatically became faster with
the new generation of CPU. However recently, Moore’s Law has not
been repealed: each year, more and more transistors fit into the same
space, but their clock speed cannot be increased without overheating.
In order to improve performance, manufacturers are instead turning
to multicore architectures, in which multiple processors communicate
directly through shared hardware caches. Multiprocessor chips make
computing more effective by exploiting parallelism: harnessing multiple
processors to work on a single task. In this course we focus on how to
program multiprocessors that communicate via a shared memory. Such
systems are often called multicores. The challenges (and the solutions)
that we will explore, arise at all scales of multiprocessor systems: at a
very small scale such as a laptop (even the ones with a single core) and on
a large scale such as in the case of supercomputers or systems distributed
over many machines.

Welcome to parallel programming! In this script we are going to cover
some very interesting topics: some in depth and in some cases we will
just scratch the surface. We are going to talk about performance and
correctness aspects of parallel computation. Moreover, we will have a
broad look that will touch other areas of Computer Science: algorithms,
operating systems and various logical problems. We hope that you will
not only get the details necessary to prepare for your exam (in this case,
our number one recommendation is do not memorize too many details,
practice, practice and practice again), but them main goal is that you will be
able to build a big picture of the situation with a lot of links between the
concepts, by also considering what you learn in other courses.

Before we begin our journey, we point out a very important distinction
that is made in this lecture, i. e. the difference between parallelism and
concurrency. The concept of parallelism implies the use of additional com-
putational resources to solve a problem faster. As an example think that
you have to sum all elements of an array: the idea of parallelism is that,
instead of doing everything by yourself, you call some other friends (which,
out of the analogy, we will call threads) and you split the work, i. e. each
person sums of a part of the array while the other are summing theirs
and at the end you sum the results together. The concept of concurrency
might sound similar at the beginning, but is quite different: concurrency
is about correctly and efficiently controlling access to multiple threads to
shared resources. In the contexts that we will encounter throughout this
course, we usually have that parallelism implies concurrency (this might
not always be true in some pathological cases, but it holds in all real
world situations), but concurrency does not always imply parallelism

1 Introduction 2

(this means, for example, that if you run programs with multiple threads
on a single core you still have to carefully manage access to mutable
shared resources).

1.1 Theoretical Perspective

The most common theoretical model to reason about parallelism, and
particularly about parallel algorithms, is the Parallel Random Access Machine
(PRAM) model, which considers a number of RAM machines, all of
whom have access to some shared memory. We note that this model is
most interesting from a theoretical perspective and it ignores a range
of practical issues, instead trying to focus on the fundamental aspects
of "parallelism in computation". While there have been a number of
different theoretical models introduced throughout the years for parallel
computation, PRAM has remained the primary one and it has served
as a convenient vehicle for developing algorithmic tools and techniques.
Many of the ideas developed in the context of PRAM algorithms have
proved instrumental in several other models and they are also being
used in practical settings of parallel computations. In the PRAM model,
we consider ? number of RAM processors, each with its own local
registers, which all have access to a global memory. Time is divided
into synchronous steps and in each step, each processor can do a RAM
operation or it can read/write to one globalmemory locations. Themodel
has four variations with regard to how concurrent reads and writes to
one global memory are resolved; Exclusive Read ExclusiveWrite (EREW),
Concurrent Read Exclusive Write (CREW), Exclusive Read Concurrent
Write (ERCW) and Concurrent Read Concurrent Write (CRCW). When
concurrent writes on the same memory location are allowed, there are
variations on how the output is determined. A simple rule is to assume
that an arbitrarily chosen one of the write operations take effect.

1.2 Threads

Before writing any parallel or concurrent programs , we need some
way of making multiple things happen at once and some way for those
different things to communicate.The programmingmodelwewill assume
is explicit threads with shared memory.

A thread is like a running sequential program (formally we say that it
is an independent sequences of execution), but one thread can create other
threads that are part of the same program and those threads can create
more threads, etc. Two or more threads can communicate by writing and
reading fields of the same object. They can see the same objects because
we assume that they share memory. Conceptually, all the threads that
have been started but not yet terminated are ”running at once” in a
program. In reality, they may be running at any particular moment, as
there may bemore threads than processors or a threadmay bewaiting for
something to happen before it continues. When there are more threads
than processors, it’s up to the Java implementation, with help from the
underlying operating system, to find a way to let the threads ”take turns”
using the available processors. This is called scheduling and is a major

1 Introduction 3

topic in operating systems. All we need to care about is that it’s not under
our control: we create the threads and the system schedules them.

We will now see how to create new threads in Java. The details vary in
different languages. In addition to creating threads, we will need other
language constructs for coordinating them. For example, for one thread to
read the result of another thread’s computation, the reader often needs to
know whether the writer is done. Creating a new thread in Java requires
that you define a new class and then perform two actions at run-time:

1. Define a subclass of java.lang.Thread and override the publicmethod
run, which takes no arguments and has return type void. The run
method will act like ”main” for threads created using this class.
It must take no arguments, but the example below shows how to
work around this inconvenience.

2. Create an instance of the class created in step 1. Note that this
doesn’t create a running thread. It just creates an object.

3. Call the startmethod of the object you created in step 2. This step
does the ”magic” creation of a new thread. The new thread will
execute the runmethod of the object. Notice that you do not call run;
that would just be an ordinary method call. You call start, which
makes a new thread that runs run. The new thread terminates
when its runmethod completes.

In general every Java program has at least one execution thread (and
the first execution thread calls the main() method). Each call to start()
method of a Thread object creates a new thread. The program ends when
all non-daemon thread (i. e. thread that assist the operating system) finish.
The various threads can continue even if main() returns.

Example 1.2.1 Here is a useless Java program that starts with one
thread and then creates 20 more threads:

1 public class Useless extends Thread{
2 int i ;
3 Useless(int i) { this . i = i ; }
4 public void run(){
5 System.out.println("Thread" ++ i ++ "says hi") ;
6 System.out.println("Thread" ++ i ++ "says bye") ;
7 }
8 }
9 public class M{
10 public static void main(String[]args){
11 for(int i = 1; i < 21; i++){
12 Thread t = new Useless(i);
13 t . start () ;
14 }
15 }
16 }

When running this program, it will print 40 lines of output, the order
of which is unpredictable. In fact, if you run the program multiple
times, you will probably see the output appear in different orders
every run. The example shows that there is no guarantee that threads

1 Introduction 4

created earlier will run earlier. Therefore, multithreaded programs
are nondeterministic. This is an important reason why multithreaded
programs are much harder to test and debug.We can also see how this
program worked around the rule that run is not allowed to take any
arguments. Any ”arguments” for the new thread are passed via the
constructor, which then stores them in fields so that run can later access
them. We close with a performance consideration: creating a new
thread is an expensive operation which requires time and introduce a
significant overhead.

We mentioned previously that we’d like to make a thread wait before
reading a value until another thread has finished its computations, i.e. its
runmethod. We can do this with the join keyword, which we’ll introduce
through another somewhat useless example.

Example 1.2.2 Here is a Java program that starts with one thread
which spawns 20 more threads and waits for all of them to finish.

1 public class Useless extends Threads{
2 int i ;
3 Useless(int i) { this . i = i ; }
4 public void run(){
5 System.out.println("The double of" ++ i ++ "is ++ i∗2);
6 }
7 }
8 public class Main{
9 public static void main(String[]args){
10 Threads[] threads = new Threads[20];
11 for(int i = 0; i < 20; i++){
12 Thread t = new Useless(i + 1) ;
13 t . start () ;
14 threads[i] = t ;
15 }
16 for(int i = 0; i < 20; i++){
17 try{threads[i]. join () ; }catch(InterruptedException e){}
18 }
19 System.out.println("All done!);
20 }
21 }

The joinmethod can throw an InterruptedException, which means we
need to wrap it in a try-catch block.

Thread states

If wewant to be able to talk about the effects of different thread operations,
we need some notion of thread states. In short, a Java thread typically goes
through the following states:

I Non-Existing: Before the thread is created, this is where it is. We
do not know too much about this place, as it’s not actually on this
plane of reality, but it’s somewhere out there.

1 Introduction 5

I New: Once the Thread object is created, the thread enters the new
state.

I Runnable: Once we call start() on the new thread object, it becomes
eligible for execution and the system can start scheduling the thread
as it wishes.

I Blocked: When the thread attempts to acquire a lock, it goes into a
blocked state until it’s actually obtained the lock, upon which it
returns to a runnable state. In addition, calling the join()method
will also transfer at thread into a blocked state.

I Waiting: The thread can call wait() to go into a waiting state. It’ll
return to a runnable state once another thread calls notify() or
notifyAll() and the thread is removed from the waiting queue.

I Terminated: At any point during execution we can use the interrupt()
to signal the thread that it should stop execution. Itwill then transfer
to a terminated state. Note that when the thread is in a runnable
state, it needs to check whether its interrupted flag is set itself,
it won’t transfer to the terminated state automatically. Of course,
exiting the run method is equivalent to entering a terminated
state. Once the garbage collector realizes that the thread has been
terminated and is no longer reachable, it will garbage collect the
thread and it will return to a non-existing state, completing the
cycle.

1.3 Bad Interleavings and Data Races

A race condition is a mistake in your program such that, whether the
program behaves correctly or not, depends on the order that the threads
execute. Race conditions are very common bugs in concurrent program-
ming that, by definition, do not exist in sequential programming. We
distinguish two types of race conditions.

One kind of race condition is a bad interleaving. The key point is that
”what is a bad interleaving” depends entirely on what you are trying to
do. Whether or not it is okay to interleave two bank-account withdraw
operations depends on some specification of how a bank is supposed to
behave.

Example 1.3.1 Suppose we have the following implementation of a
peek operation on a concurrent stack.

1 static <T> T peek(Stack<T> s){
2 T ans = s .pop();
3 s .push(ans);
4 return ans;
5 }

Assume that the pop and push methods are implemented correctly.
While peek might look like it’s implemented correctly, the following
interleaving might occur: first a thread � pushes an element G into
the stack. Then thread � begins the peek operation and pops G. After
this thread � pushed the element H into the stack. Thread � goes on

1 Introduction 6

with its peek by pushing back G into the stack and returning this value.
What if now thread � performs a pop() operation? The result should be
H, but with this interleaving, the program would (wrongly) return G.

The other kind of race condition are data races, a phenomenon that is
better described as a ”simultaneous access error”, although nobody uses
that term. There are two kinds of data races:

I When one thread might read an object field at the same moment
that another thread writes the same field.

I When one thread might write an object field at the same moment
that another thread also writes the same field.

Notice that it is not an error for two threads to both read the same object
field at the same time. Our programs must never have data races even if
it looks like a data race would not cause an error - if our program has
data races, the execution of your program is allowed to do very strange
things.

Example 1.3.2 Let’s consider an example.

1 class C{
2 private int x = 0;
3 private int y = 0;
4
5 void f () {
6 x = 1;
7 y = 1;
8 }
9 void g() {
10 int a = x;
11 int b = x;
12 assert (b>=a);
13 }
14 }

Notice that f and g are not synchronized, leading to potential data
races on fields x and y, Therefore, it turns out that the assertion in
g can fail. But there is no interleaving of operations that justifies the
assertion failure, as can be seen through a proof by contradiction:

Assume the assertion fails, meaning !(b>=a). Then a==1 and b==0.
Since a==1, line B happened before line C. Since A must happen before
B, C must happen before D, and ”happens before” is a transitive
relation, A must happen before D. But then b==1 and the assertion
holds.

There is nothing wrong with the proof except its assumption that we
can reason in terms of ”all possible interleaving” or that everything
happens in certain orders. We can reason this way only if the program
has no data races.

1 Introduction 7

Other Models

We’ve introduced a programming model of explicit threads with shared
memory. This is, of course, not the only programming model for con-
current or parallel programming. Shared memory is often considered
convenient because communication uses ”regular” reads and writes
of fields to objects . However, it’s also considered error-prone because
communication is implicit; it requires deep understanding of the code/-
documentation to know which memory accesses are doing inter-thread
communication and which are not. The definition of shared-memory pro-
grams is also much more subtle than many programmers think because
of issues regarding data races, as discussed in the previous section.

Three well-known, popular alternatives to shared memory are presented
in the following. Note that different models are better suited for different
problems. Models can be abstracted and built of top each other as we
wish or we can use multiple models in the same program (e.g. MPI with
Java).

Message-passing is the natural alternative to sharedmemory. In this model,
we have explicit threads, but they do not share objects. To communicate,
they exchange messages, which sends a copy of some data to its recipient.
Since each thread has its own objects, we do not have to worry about
other threads wrongly updating fields. But we do have to keep track of
different copies of things being produced by messages. When processes
are far apart, message passing is likely a more natural fit, just like when
you send email and a copy of the message is sent to the recipient.

Dataflow provides more structure than having ”a bunch of threads
that communicate with each other however they want.” Instead, the
programmer uses primitives to create a directed acyclic graph. A node
in the graph performs some computation using inputs that arrive on
its incoming edges. This data is provided by other nodes along their
outgoing edges. A node starts computing when all of its inputs are
available, something the implementation keeps track of automatically.

Data parallelism does not have explicit threads or nodes running different
parts of the program at different times. Instead, it has primitives for
parallelism that involve applying the same operation to different pieces
of data at the same time. For example, you would have a primitive for
applying some function to every element of an array. The implementation
of this primitive would use parallelism rather than a sequential for-loop.
Hence all the parallelism is done for you provided you can express your
program using the available primitives.

We conclude this introductory chapter with a branch of parallel program-
ming which is likely to become crucial in the following years. Since we
are in the era of Big Data, it is likely that in the future we will not just
have to exploit parallelism within a single machine, but to coordinate the
work of several computers.

Massive Parallel Computing (MPC) considers a system composed of some
" number of machines, each of which has a memory of size (words.
This memory (is typically assumed to be significantly less than the input
size # . The input is distributed arbitrarily across the machines, e.g. in
the case of sorting each machine holds some of the items, and in the case

1 Introduction 8

of graph problems each machine holds some of the edges of the graph.
The computation in MPC proceeds in lock-step syncrhonous rounds 1,
2, 3, ... Per round, each machine can do some computation on the data
that it holds, and then it sends messages to the other machines. The
model does not impose any particular restriction on the computations
that each machine can perform in one round. As for the commutation,
the limitation is simple: per round, each machine can send at most (
words and it can receive at most (words. Our algorithm needs to just
describe what information should be sent from each machine to each
other machine, subject to the above constraints.

Parallelism 2
2.1 Performance

In an ideal world, upgrading from a uniprocessor to an =−way multi-
processor should provide about an =−fold increase in computational
power. In practice, sadly, this never happens. The primary reason for this
is that most real-world computational problems cannot be effectively par-
allelized without incurring the costs of inter-processor communication
and coordination. Consider five friends who decide to paint a five-room
house. If all the rooms are the same size, then it makes sense to assign
each friend to paint one room, and as long as everyone paints about
the same rate, we would get a five-fold speed-up over the single painter
case. The task becomes more complicated if the rooms are of different
sizes. For example, if one room is twice the size of the others, then the
five painters will not achieve a five-fold speedup because the overall
completion time is dominated by the one room that takes the longest
to paint. Another important factor that explains why we do not achieve
the perfect speedup is the fraction of non parallelizablework: some parts
of the program might not be parallelizable at all and, as we will see
with a rigorous mathematical explanation shortly, this might become
a bottleneck. Now we take a look at the problem from a mathematical
perspective.

Before we begin, we need to introduce some terminology. Let % denote
the number of processors available during the execution of a program.

Definition 2.1.1)% is the time to execute a program on % processors.
Important special cases are the sequential time)1 and)∞, i. e. the execution
time when infinitely many processors are available.

Definition 2.1.2 (Speedup) The speedup (% of a program is given by

(? :=
)1
)?

Amdahl’s Law

The speedup of a parallel program can be decreased by several factors.
One of them is the overhead caused by introducing parallelization in
the program. As we have pointed out in the previous chapter (and as
you have seen in Assignment 2), creating threads (a necessary ingredient
to parallelize our program) is costly. Another factor that decreases the
speedup is given by the sequential part of the program: imagine that you
have infinite friends that can help you painting the house described at
the beginning of this section. If you need ten minutes in order to explain
them how to work, this is the sequential part of your algorithm and is
definitely a bottleneck to the final speedup, in the sense that the people

2 Parallelism 10

will definitely need at least ten minutes to clean the house. In order to
derive a precise mathematical formulation for this concepts we denote
with,B4A the time spent doing non-parallelizable, serial work and,?0A

denote the time spent doing parallelizable work. We have

)1 =,B4A +,?0A

What happens when we have more processors? Of course, the time spent
doing serializable work stays the same (new processors are not useful for
this work), but we get an improvement in the parallelizable work. We get
the following lower bound

)% ≥ ,B4A +
,?0A

%

Where the last equation is an instance of application of Brent’s principle,
which will be discussed later. By plugging this expression we get the
speedup given by Amdahl’s Law.

Theorem 2.1.1 (Amdahl’s Law)

(% =
)1
)?
≤
,B4A +,?0A

,B4A +
,?0A

%

If we denote with 5 the non-parallelizable, serial fraction of the toal work we
get

(? ≤
1

5 + 1− 5
%

When we let % go to infinity, we see that (∞ ≤ 1
5 . In order to see why this

is such an important result, we can try plugging in a couple of values.
Assume that 25% of a program is non-parallelizable. This means that
even with the IBM Blue Gene/P supercomputer with its 164000 cores, we
can only achieve a speedup of at most 4. While a depressing result at
first sight, this makes perfect sense when we consider the fact that these
25% are completely fixed, in the sense that the execution time can not
possibly be reduced past this point. The conclusion that we can draw
from this result is that it’s worth investing some more time into reducing
the sequential fraction of our program, e.g. by reducing the overhead of
communicating between threads or by picking a better algorithm (see
the third year course Algorithms, Probability and Computing for some very
exciting examples).

Gustafson’s Law

Amdahl’s Law considered a fixed workload and provides us with an
upper bound on the speedup achievable when increasing the number of
processors at our disposal. Gustafson looked at the problem from another
perspective: he fixed the time available and he looked at how much work
was it possible to do when increasing the number of processors available.
In other words, we consider the time interval to be fixed and we look at
the problem size. Let, denote the work done in a fixed time interval.

2 Parallelism 11

We get

, = 5 ·, + (1 − 5) ·,

As we increase the number of processors at out disposal, we can only
speed up the parallel fraction of our program. The serial fraction remains
the same. Letting,% be the work done with % processors at our disposal,
we get

,% = 5 ·, + % · (1 − 5),

How much time do we need to do,% when we have a single processor
available? What about the case where we have % processors? We get the
following lower bounds

)1 ≥ 5 ·, + % · (1 − 5),

)? ≥ 5 ·, +
% · (1 − 5),

%
=,

By plugging this values into the speedup formula we obtain Gustafon’s
Law

Theorem 2.1.2 (Gustafson’s Law)

(% = 5 + %(1 − 5) = % − 5 (% − 1)

In this case we see that, by having a very large number of processors, we
always get a larger speedup. For this reason we can say that Gustafson’s
Law is more optimistic than Amdahl’s Law.

2.2 Pipelining

In the course Digital Design and Computer Architecture you have seen
several basic concepts of computer architecture. Particularly you have
seen the Von Neumann Architecture of a processor, which assumes that the
processor is made of two basic components: CPU and memory. On the
one hand the CPU contains registers (a very small memory which can be
used to save variables that are accessed over and over again), a program
counter (that saves the address in memory of the next instruction that
has to be executed) and an ALU which performs arithmetical operations.
On the other hand the memory contains both data and programs (i. e.
there are some addresses in memory which save instructions that will be
fetched, decoded and executed by the CPU when the program counter
will contain their address). How can this model become faster? There are
two important solutions

I When memory becomes a bottleneck introduce a hierarchical
memory system. Sometimes the CPU is very fast, but the transfer
of instructions and data to/ from memory takes a long time. A
solution to this issue is introducing different levels of caches to
exploit two heuristic principles called temporal location (i. e. the
hypothesis a memory that was accessed recently is likely to be

2 Parallelism 12

accessed again in the near future) and spatial location (i. e. if we
accessed a region in memory it is likely that we will access its
neighbor addresses, this is particularly true for a sequential array
access). There are different levels of caches with different sizes,
and in general it holds that smaller memory implies faster access.
By having different levels of caches one hopes that the expensive
accesses to main memory will be rare and hence, at least most
of the times, we will have the data that we need in one of those
caches. In order to achieve this goal there are several algorithms
that answer the question what should we save in the cache? You will
get an answer to this and other interesting questions in the course
Systems Programming and Computer Architecture, for the purpose
of this course is enough to know that by organizing the memory
in a hierarchical way with several caches of different size (and
access time) the access to memories get a lot faster and hence they
speedup the programs a lot.

I Exploiting parallelism in the hardware. In this model, which is
the one that we study in this section, the programmer has no
idea that there is parallelism going on. The programmer writes a
sequential program and assumes that the hardware will execute
the instructions in order, but then the hardware uses some tricks
to make this sequential program run faster. There are three basic
main approaches to enhance parallelism without exposing it the
programmer. The first one is vectorization that is used when the same
operation is executed on an aggregate of # items (such as doing
the same operation on all elements of an array). Instead of taking
one element from memory, doing the operation and writing back
the result to memory, in this case the CPU directly takes : elements
from memory, executes the operation on all : elements and writes
back the results of all : elements to memory. If the operation to be
executed is an arithmetic operation and the CPU has more than a
single ALU, the operations can be executed in parallel, otherwise
this approach still gives a minor overhead compared to the naive
version. The second approach is Instruction Level Parallelism (ILP),
where the CPU reorders the instructions of the program in some
way (and hopefully, by doing this, it will improve its performance)
but then it makes sure that for the programmer it appears in the
same way as if everything was executed sequentially. An important
concepts is detecting which instructions are independent from each
other and hence can be executed in parallel or reordered. In the
context of ILP arise some keywords such as superscalar CPUs (i. e.
CPUs with multiple functional units), speculative execution (i. e.
when there is a conditional branch the processormight guesswhich
branch will be taken and executing it speculatively, by gaining in
performance if the guess was right and by paying a time price
if the guess was wrong), out of order execution (i. e. change the
execution order of instructions as far as the programmer observes
the sequential order) and pipelining, which we discuss in greater
detail here.

Pipelining is a technique where multiple independent instructions are
overlapped in execution through the use of multiple execution units,
provided that they are available for use. Before we dive into examples
we introduce some important concepts.

2 Parallelism 13

Definition 2.2.1 (Throughput) Throughput is amount of work that can
be done by a system in a given period of time. Larger is better. In CPUs it
corresponds to the number of instructions completed per second and in general
it can be approximated as follows

)ℎA>D6ℎ?DC ∼ 1
max(2><?DC0C8>=)8<4(BC064B)

Note that we usually consider throughput when the pipeline is fully utilized,
i.e. ignoring lead-in and lead-out time.

Definition 2.2.2 (Latency) Latency is the time needed to perform a compu-
tation (e.g. a CPU instruction), including wait time resulting from resource
dependencies. Lower is better.

The goal would be to have a high throughput and a low latency. However,
this goals are often conflicting. Another important concept is the one of
balanced pipeline: we say that a pipeline is balanced if its latency remains
constant over time.

In order to get insights into the world of pipelining we discuss several
variants of the washing machine pipeline. In this example we have four
stages that are executed five times: the washing phase (5 seconds), the
dryer phase (10 seconds), the folding phase (5 seconds) and the closet
phase (10 seconds). We want to pipeline the stages in order to save time
compared to the sequential version.

I First attempt: just wait until the resource you need is available. In
this context the first load takes 30 seconds. The second load takes
five seconds more: in facts, after the washing phase, it has to wait
for the dryer to finish. The third one takes ten seconds more; in
facts, after the washing phase, it has to wait for the drying phase
of load number two to be over (which will be ten seconds later).
Each load takes five seconds more of the previous one. The total
time for all loads is 70 seconds. This pipeline can work, however it
cannot bound the latency of a Load as it keeps growing. If we want
to bound this latency, one approach is to make each stage take as
much time as the longest one, thus balancing it.

I Second attempt: we let each phase take the same time as the longest
one (in this case 10 seconds). In this case each load takes 40 seconds
and in total we need 80 seconds (longer than before). This pipeline
is a bit wasteful, but it bounds the latency. Can we somehow get a
bound on latency while improving the time/throughput?

I Third attempt: if we introduce multiple units on the longest stages
(i. e. the drying and the closet phase) we can get a better throughput
while keeping the latency constant. The cost to achieve this result
is buying more functional units. This is exactly the idea behind
superscalar processors.

Example 2.2.1 (CPU Pipeline) The CPU pipeline is a technique for
implementing instruction-level parallelism within a single processor.
Pipelining attempts to keep every part of the processor busy with
some instruction by dividing incoming instructions into a series of

2 Parallelism 14

sequential steps performed by different processor units with different
parts of instructions processed in parallel. The stages of such a pipeline
are:

I Instruction fetch: where the CPU fetches the next instruction by
looking at the address in the CPU’s instruction pointer. In this
stage advanced techniques such as speculative execution can
come into play.

I Instruction decode: the CPU receives the instruction from mem-
ory and understandswhat it has to do by examining the sequence
of bits.

I Execution: the CPU executes the heart of the instruction, without
memory access.

I Memory access: the CPU reads the necessary data from memory
(or caches).

I Writeback: the CPU writes the necessary data in memory.

We point out that the solutions that we discussed so far are implemented
at the hardware level and hence a programmer does not need to use those
tricks in high level programming.

We have seen that originally computers followed the idea of the Von
Neumann machine and that CPUs architects improved sequential execu-
tion by exploiting Moore’s Law and some hardware parallelism tricks.
For a long time sequential programs were becoming exponentially faster
with each new CPU and hence most programmers did not worry about
performance in this sense: they just waited for the next CPU generation.
But CPU architects hit walls as the power wall (i. e. the fact the faster CPU
consumedmore energy and hence became expensive in energy terms and
overheated), the memory wall (i. e. the fact that, although there are some
tricks such as the memory hierarchy the CPU was way faster than mem-
ory access) and the ILP wall (i. e.with ILPwe cannot have speedup beyond
a certain point). Hence it is no longer affordable to increase sequential
CPU performance. Nowadays, in order to have good performance, it is
important to expose parallelism to software: programmers need to write
parallel programs to take advantage of the new (multicore) hardwares.

2.3 A typical example of parallel programming:
the divide and conquer paradigm

In the course Algorithms and Data Structures of the first semester, you
have encountered the first examples of divide and conquer algorithms.
For example you have talked about the find a star and the maximum
subarray sum problems. However probably, the most famous example of
this paradigm you might recall is MergeSort. In MergeSort you proceed
in the following way in order to sort an array:

1. You split the array in two (equally long) parts
2. You sort both parts recursively (or, in principle, with any sorting

algorithm you want)
3. You merge the resulting sorted subarray into a single, sorted array

This paradigm can be applied to many problems, and is suitable for
parallelization. In facts, in all divide and conquer algorithms, you split

2 Parallelism 15

the original task into two (or more) subtasks which you solve recursively.
All this recursive tasks are independent and hence can be performed in
parallel. In the case of MergeSort you can split your array in two parts
and, while you sort the first part, you call a friend that sorts the second
part at the same time. At the end, you just have to merge both results.

While divide and conquer algorithms seem very natural to parallelize,
we currently have no easy way of determining the efficiency of these
algorithms in a parallel setting and itwould be quite tedious to implement
them using regular Java threads.Wewill therefore first introduce away of
visualizing the performance of a divide and conquer algorithm and will
then look at two different libraries to see how we can easily implement
this paradigm.

Task Graphs

We can describe program executions as directed acyclic graphs. We
have that nodes are the pieces of work that the program performs
and each node will have a constant execution time per task (in most
cases we will interpret the execution time per node as one). Edges
represent that the source node must complete before the target node
begins, i.e. there is a data dependency along the edge. We will now
connect this visual representation of the execution of a program with
the terminology introduced in the previous section by introducing two
additional important concepts.

Definition 2.3.1 (Work) The work done in total in order to solve the task is
the sum of the time costs of all nodes in the graph. We denote it again as)1.

Definition 2.3.2 (Span) Span is the sum of the time cost of all nodes along
the critical path, i. e. the longest path in the graph. The span determines the
best possible execution time we can achieve by introducing an arbitrary large
number of processors, i. e.)∞.

In generalwehave that independent tasks (i. e.nodes that haveno common
ancestor on the path to the root) can execute in parallel. However they
do not have to execute in parallel: the assignment of tasks to the CPUs
is up to the scheduler (for this course you can think to the scheduler
as a referee between your program and the hardware that can decide
who uses the CPUs; this concept will be studied in greater details in the
core course Computer Systems). The intuition is that wider task graphs can
exploit more parallelism. What speedup do we have in general? We have
two lower bounds on the time needed to execute the program with %
processors, i. e.

)% ≥
)1
%

)% ≥)∞

In general, the value that)% will have depends on the scheduling
algorithm, but one can prove that with a work stealing scheduler (i. e. a

2 Parallelism 16

scheduler that does not make any core idle), we have

)? =
)1
%
+ O()∞)

and the hidden constant in the asymptotic notation has been empirically
shown to be reasonably small.

Summarizing, we can view each computational process as a sequence
of rounds, where each round consists of a (potentially large) number of
computations that are independent of each other and can be performed
in parallel. In this view, we refer to the total number of rounds as the depth
of the computation and we referred to the summation of the number of
computations performed over all the rounds as the total work. Naturally,
the primary goal when designing parallel algorithms for a given task, is
to have a depth as small as possible. A secondary goal is to have a small
total work. Then we can relate this depth and work to the actual time
measure for the computation on parallel processing systems with the
equation above, also known as Brent’s principle.

Now the natural question that comes into mind is: how can we implement
parallel algorithms with a good task graph? In the general case, designing
good parallel algorithms is challenging and we refer to other lectures
(particularly, the excellent course Algorithms, Probability and Computing),
but for the particular case of divide and conquer algorithms we present
two useful frameworks that manage a lot of things for the user: the
executor service and the fork and join framework.

Executor Service

Instead of managing the threads ourselves we can use a library which
manages a threadpool to which we can submit tasks. The basic idea is
that we have several independent tasks that can be performed in parallel
and the executor service binds each task to a thread taken from the
threadpool. A task is either:

I A Runnable object, which implements a method void run() and does
not return a result

I A Callable<T> object, which implements a method T call() and
returns a result of type T

Upon submitting a task a Future<T> is created, which contains the result
of the submitted task. Implementing a divide and conquer algorithm
now looks easier, as shown in the following example.

Example 2.3.1 We wish to submit tasks to the ExecutorService such
that we can obtain some sort of result from the task’s execution. We
therefore need to implement a Callable task (i). We’ve additionally
provided the code for creating an ExecutorService and submitting the
topmost task (ii). Try running it locally and see what happens.

Algorithm 2.1: Sum elements in array1 class Sum implements Callable{
2
3 int low; B Index where we need to start

2 Parallelism 17

4 int high; B Index where we need to end
5 int [] array B Input array
6 ExecutorService ex;
7
8 SumForkJoin(ExecutorService e, int[] ar , int lo , int hi) {
9 low = lo;
10 high = hi ;
11 array = ar;
12 ex = e; B Simple constructor
13 }
14
15 protected Integer call () throws Exception{
16 if (h − l ==1){
17 return arr[l] B Base case
18 }
19 int mid = (h − l) / 2;
20 Sum left = new Sum(ex, arr, low, low + mid);
21 Sum right = new Sum(ex, arr, low + mid, h);
22 Future<Integer> f1 = ex.submit(left) ;
23 Future<Integer> f2 = ex.submit(right);
24 try{
25 return f1 .get () + f2 .get () ;
26 }catch(Exception e){
27 return 0;
28 }
29 }
30 }
31
32 public static void main(String[]args){
33 int [] arr = ...
34 ExecutorService ex = Executors.newFixedThreadPool(4);
35 Sum top = new Sum(ex, arr, 0, arr.length);
36 Future<Integer> res = ex.submit(top);
37 try{
38 System.out.println(res .get ()) ;
39 }catch(Exception e){}
40 ex.shutdown();
41 }

You should see that the program never terminates. The reason for this
is that the ExecutorService limits the number of threads that can be
spawned. Once all threads are occupied by tasks waiting for the result
of spawned subtasks, execution is therefore halted. No threads are
available to run the subtasks on, i.e. the subtasks will wait indefinitely.

With the ExecutorService, the limited thread pool size caused the pro-
gram to run forever, as all currently active threads were occupied by
tasks waiting for the spawned subtasks to return. While there are pos-
sible approaches that could alleviate this problem, e.g. separating the
work partitioning from solving the sub-tasks,they are all non-trivial to
implement and are therefore not well suited for practical purposes.

2 Parallelism 18

The Fork and Join Framework

The drawbacks of Executor Service suggest that we need a framework
that supports divide and conquer style parallelism. That is, when a task
is waiting, it is suspended and other tasks are allowed to run. Compared
to Java threads, the usage of these classes is exactly the same, but with
some different names and interfaces. First, we’ll introduce the required
terminology.

I Instead of extending Thread, we extend RecursiveTask<T> (which
returns a value) or RecursiveAction (which does not return any
value)

I Instead of overriding run. we override compute
I Instead of calling start, we call fork (which creates a new task)
I Instead of a topmost call to run, we create a ForkJoinPool and call

invoke
I We stil call join, but now it returns a value

We are deeply convinced that the best way to learn how this library works
is doing a lot of exercises. Hence, for the sake of brevity, we will just
expose an example here with some additional comments. The goal of the
following code is simply summing all elements of the input array.

Algorithm 2.2: Sum elements in array1 class SumForkJoin extends RecursiveTask<Long>{
2
3 int low; B Index where we need to start
4 int high; B Index where we need to end
5 int [] array B Input array
6
7 SumForkJoin(int[] ar, int lo , int hi) {
8 low = lo;
9 high = hi ;
10 array = ar; B Simple constructor
11 }
12
13 protected Long compute(){
14 if (high − low <= CUTOFF){
15 int res = 0;
16 for(int i = low; i < high; i++){
17 res+= array[i];
18 }
19 return res ; B Base case, compute sequentially
20 }
21 else {
22 int mid = low + (high − low) / 2;
23 SumForkJoin left = new SumForkJoin(array, left, mid);
24 SumForkJoin right = new SumForkJoin(array, mid, right);

B Divide the problem in two subtasks
25 left . fork () ; B Spawn a new thread for the left subproblem
26 long rightAns = right .compute(); B The original thread goes on on

the right side
27 return left . join () + rightAns; B When results are ready, compute

the result
28 }
29 }

2 Parallelism 19

30 }

We end this short paragraph with some general concepts:

I It is highly inefficient to divide the problem until the trivial case
where there is only a single element in the array. This holds because
spawning the required number of threads for a short array is more
expensive than computing the result sequentially. Use a cutoff with
a value around 500-1000 in order to be efficient.

I Do not fork both subtasks. This creates a new thread for each
subtask, although this is not required (the original thread can be
reused).

I In order to start the computation declare a ForkJoinPool (which uses
the number of processors as default parameter) and invoke it on
the task. In this way the library will automatically manage the
processors in order to parallelize your task efficiently.

2.4 A taste of parallel algorithms

In this section we explain an algorithm used for an elementary prob-
lem: adding two =−bit binary numbers, 0 = 0= , 0=−1 , . . . , 01 and 1 =

1= , 1=−1 , . . . , 11, where 08 and 18 denote the 8−th least significant bits of
0 and 1 respectively. The goal is to output 0 + 1, also in binary represen-
tation. How we will see, this algorithm provides some useful techniques
which are used also for other problems, such as the prefix sum problem
that you have discussed in the lecture.

A basic algorithm for computing the summation 0 + 1 is carry-ripple. This
is probably what most of us learned in the elementary school as "the
way to compute summation". In the binary case, this algorithm works
as follows: we compute the output bit B1 by adding 01 and 11 (mod 2),
but on the side we also produce a carry bit 21, which is 1 iff 01 + 11 ≥ 2.
Then, we compute the second output bit B2 based on 02, 12 and 21, and
on the side also produce a carry bit 22. The process continues similarly.
We compute B8 as a (simple) function of 08 , 18 and 28−1, and then we also
compute 28 as a side-result, to be fed to the computation of the next bit of
output. A shortcoming of the above algorithm is that computing each
bit of the output needs to wait for the computation of the previous bit to
be finished, and particularly for the carry bit to be determined. Even if
many of your friends come to your help in computing this summation,
it is not clear how to make the computation finish (significantly) faster.
We next discuss an adaptation of the above algorithm, known as carry
look-ahead that is much more parallelizable.

The only problematic part in the above process was the preparation of the
carry bits. Once we can compute all the carry bits, we can complete the
computation to find the output bit B8 easily from 08 , 18 and 28−1. Moreover,
the computations of different output bits B8 are then independent of each
other and can be performed in parallel .Se, we should find a better way
to compute the carry bits 28 .

Let us re-examine the possibilities for 08 , 18 and 28−1 ans see what 28
should be in each case. If 08 = 18 = 1, then 28 = 1; if 08 = 18 = 0 then
28 = 0, and if 08 ≠ 18 , then 28 = 28−1. Correspondingly, we can say that

2 Parallelism 20

the carry bit is either generated (g), killed (k), or propagated (p). Given 08
and 18 , we can easily determine an G8 ∈ {6, :, ?} which indicates in
which of these three cases we are. Now, let us examine the impact of two
consecutive bits, in the adder, on how the carry bit gets passed on. We
can write the following simple multiplication table:

k p g
k k k k
p k p g
g g g g

Table 2.1:Multiplication table

Let H0 = : and define H8 ∈ {:, ?, 6} as H8 = H8−1 × G8 , using the above
multiplication table. Here H0 indicates that there is no carry before the
first bit. Once we compute H8 , we know the carry bit 28 : in particular
H8 = : implies 28 = 0, and H8 = 6 means 28 = 1. Notice that we can
never have H8 = ? because H0 = :. So what remains is to compute H8 for
8 ∈ {1, . . . , =}, given that G8 ∈ {:, ?, 6} are known. Notice that each G8
was calculated as a function of 08 and 18 , and all in parallel. Computing H8
is a simple task for parallelism and it is generally known as Parallel Prefix.
We next explain a classic method for it: we build a full binary tree on the
top of the indices {1, . . . , =}. then, on this tree, we pass up the product
of all descendants, toward the root, in O(log =) parallel steps. This way,
each node in the binary tree knows the product of all G8 in indices 8 that
are its descendants. Then, using O(log =) extra parallel steps, each node
passes to each of its children the product of all of the G8 in the indices
that are preceding the rightmost descendant of that child (pictorially,
we are imagining the least significant bit in the rightmost part and the
most significant part in the leftmost part). A the end, each leaf (index 8)
knows the product of all indices before itself and thus can compute H8 .
We summarize this considerations in the following figure.

Concurrency 3
3.1 A Teaser

Instead of treating coordination problems as programming exercises, we
begin with an analogy as a physical problem. We now present a short
story that provides insights with some of the most important concepts of
this chapter.

Alice and Bob are neighbors, and they share a yard. Alice owns a cat and
Bob owns a dog. Both pets like to run around in the yard, but (naturally)
they do not get along. After some unfortunate experiences, Alice and Bob
agree that they should coordinate to make sure that both pets are never in
the yard at the same time. Of course, we rule out trivial solutions that do
not allow any animals into an empty yard. How should they do it? Alice
and Bob need to agree on mutually compatible procedures for deciding
what to do. We call such an agreement a coordination protocol. The yard is
large, so Alice cannot simply look out of the window and check whether
Bob’s dog is present. She could perhaps walk over to Bob’s house and
knock on the door, but that takes a long time. Alice might lean out the
window and shout Hey Bob! Can I let the cat out? The problem is that Bob
might no hear her. They could try to coordinate by cell phone, but maybe
Bob is taking a shower. Alice has a clever idea. Each one sets up a flag
pole, easily visible to the other. When Alice wants to release her cat, she
does the following:

1. She raises her flag
2. When Bob’s flag is lowered, she unleashes her cat
3. When her cat comes back, she lowers her flag

Bob’s behaviour is a little bit more complicated:

I He raises his flag
I While Alice’s flag is raised

(a) Bob lowers his flag
(b) Bob waits until Alice’s flag is lowered
(c) Bob raises his flag

I As soon as his flag is raised and hers is down, he unleashes his dog
I When his dog comes back, he lowers his flag

This protocol rewards further study as a solution to Alice and Bob’s
problem. On an intuitive level, it works because of the following flag
principle. If Alice and Bob each

1. Raises his or her own flag, and then
2. Looks at the other’s flag

then at least one will see the other’s flag raise (clearly, the last one to look
will see the other’s flag raised) and will not let his or her pet enter the
yard. However, this observation does not prove that the pets will never be
in the yard together. What if, for example, Alice lets her cat in and out of

3 Concurrency 22

the yard several times while Bob is looking? To prove that the pets will
never be in the yard together, assume by way of contradiction that there
is a way the pets could end up in the yard together. Consider the last
time Alice and Bob each raised their flag and looked at the other’s flag
before sending the pet into the yard. When Alice last looked, her flag was
already fully raised. She must have not seen Bob’s flag, or she would not
have released the cat, so Bob must have not completed raising his flag
before Alice started looking. It follows that when Bob looked for the last
time, after raising his flag, it must have been after Alice started looking,
so he must have seen Alice’s flag raised and would not have released his
dog, a contradiction.

To show that the flag protocol is a correct solution of Alice and Bob’s
problem, we must understand what properties are required of a solution,
and then show that they are met by the protocol. First, we proved that the
pets are excluded from being in the yard at the same time a fundamental
property that we call mutual exclusion. Mutual exclusion in only one of
several properties of interest. After all, as we noted earlier, a protocol in
which Alice and Bob never release a pet satisfies the mutual exclusion
property, but it is unlikely to satisfy their pets. Here is another property
of central importance. First, if one pet wants to enter the yard, then it
eventually succeeds. Second, if both pets want to enter the yard, then
eventually at least one of them succeeds. We consider this deadlock-
freedom property to be essential. We claim that Alice and Bob’s protocol
is deadlock-free. Suppose both pets want to use the yard. Alice and Bob
each raise their flags. Bob eventually notices that Alice’s flag is raised,
and defers to her by lowering his flag, allowing her cat into the yard.
Another property of compelling interest is starvation-freedom: if a pet
wants to enter the yard, will it eventually succeed? Here, Alice and Bob’s
protocol performs poorly. Whenever Alice and Bob are in conflict, Bob
defers to Alice, so it is possible that Alice’s cat can use the yard over and
over again, while Bob’s dog becomes increasingly uncomfortable. The
last property of interest in this example concerns waiting. Imagine that
Alice raises her flag, and is then suddenly stricken with appendicitis. She
(and the cat) are taken to the hospital, and after a successful operation,
she spends the next week under observation at the hospital. Although
Bob is relieved that Alice is well, his dog cannot use the yard for an entire
week until Alice returns. The problem is that the protocol states that Bob
(and his dog) must wait for Alice to lower her flag. If Alice is delayed,
then Bob is also delayed (for apparently no reason).

Having reviewed both the strengths and weaknesses of Bob and Alice’s
protocols, we now turn our attention back to Computer Science.

In the introductory chapter we saw how multiple threads accessing
the same objects can lead to incorrect or undesirable executions and
dubbed such cases as race conditions. In this chapter we focus on the
crucial aspect of protecting access to a mutable memory location that
is shared among different threads. We first formalize the discussion of
the previous example by defining mutual exclusion and other associated
properties in a rigorous way. We’ll then see different ways to implement
mutual exclusion: locks (with their low level implementations and some
high-level synchronization primitives such as semaphores and barriers),
atomic operations (to implement spinlocks and the so called lock free data
structures) and transactional memory (a model which is in some sense

3 Concurrency 23

more optimistic than locking and is likely to play an important role in
the future). Let’s begin this fascinating journey!

3.2 Mutual exclusion

For all mutable shared memory locations, the programmer must ensure
that no bad interleaving or data race occurs by implementing mutual
exclusion. This is done by defining critical sections, i. e. sections of code
which only one thread at a time is allowed to execute. We will now first
define progress conditions and use these to explain the requirements for
the correct implementation of a critical section. We will then turn our
attention to finite state diagrams, which will allow us to formally define
whether all these requirements hold.

When talking about concurrent algorithms, we distinguish between
blocking and non-blocking algorithms. As one might think, in blocking
algorithms threads might occasionally go into a blocked state, e.g. when
attempting to acquire a lock. Among blocking algorithms, we distinguish
further cases:

I Deadlock-free: at least one thread is guaranteed to proceed into the
critical section at some point

I Starvation-free: all threads are guaranteed to proceed into the
critical section at some point

In non-blocking algorithms, threads never enter a blocked state, i. e.
they can always continue their execution. This mainly suggests that
the algorithms do not use any locks. We again distinguish two further
cases:

I Lock-free: at least one thread always makes progress
I Wait-free: all threads make progress within a finite amount of time

When comparing the different definitions listed above, we notice a few
things. We see that lock-freedom and starvation-freedom both imply
deadlock freedom.We further notice that wait-freedom implies both lock-
freedom and starvation-freedom. We summarize the different conditions
in the following table:

Blocking Non-Blocking
Someone makes progress Deadlock-free Lock-free
Everyone makes progress Starvation-free Wait-free

Of course, it is perfectly possible that an algorithm fits into none of these
categories, e.g. when there is an execution that results in a deadlock.

The mutual exclusion property is clearly essential. Without this property,
we cannot guarantee that a computation’s result are correct. Mutual
exclusion is a safety property, i. e. it assures that "something bad never
happens". The deadlock-freedom property is important. It implies that
the system never freezes. Individual threads may be stuck forever (starva-
tion), but some threads makes progress. Deadlock-freedom is a liveness
property. The starvation-freedom property, while clearly desirable, is
the least compelling of the three. Later on, we will see practical mutual

3 Concurrency 24

exclusion algorithms that fail to be starvation-free. These algorithms are
typically deployed in circumstances where starvation is a theoretical
possibility, but it is unlikely to occur in practice. Nevertheless, the ability
to reason about starvation is essential for understanding whether it is
a realistic threat. The starvation-freedom property is also weak in the
sense that there is no guarantee for how long a thread waits before it
enters the critical section.

As a final note, it is important to mention livelocks. A livelock occurs
when all or at least some threads are changing state, but none of them
actually enters the critical section. One might think of this visually as
two people in a narrow hallway continuously trying to get past each
other by stepping aside, but always stepping in the same direction. Note
that a livelock does not mean that there is no possible execution which
results in a thread entering the critical section, but simply that there is
the possibility of the threads returning to the same state without any
thread entering the critical section.

Example 3.2.1 Consider the following class BooleanFlags that incre-
ments a counter 1000 times.

Algorithm 3.1: A wrong implementation
of mutual exclusion

1 public class BooleanFlags extends Thread{
2 static int cnt = 0;
3 static boolean flag = false ;
4
5 public void run(){
6 for(int i = 0; i < 1000; i++){
7 while(flag != false) ;
8 flag = true;
9 cnt++;
10 flag = false ;
11 }
12 }
13 }

When running the program with two threads, the counter turns out
to be unexpectedly low. Looking at the implementation, we see that
the critical section is between the flag = true and flag = false statements.
The problem here is that there is a possible execution of the two
threads, namely when both read flag == false before either of them
could set flag = true, where both threads enter the critical section.
Therefore, the requirement of mutual exclusiveness is violated and
this implementation is incorrect.

A useful tool to realise whether the properties of mutual exclusion,
deadlock-freedom and starvation-freedom are satisfied are state diagrams.
An execution state diagram visually represents the different states and
state transitions between them. A program state is determined by the
instructions the threads are executing and the states of global variables
and concurrent objects. A state transition is then simply represented
by arrows between such boxes. Using state transition diagrams, it is
easy to determine whether the critical section is implemented correctly.
Deadlocks can be recognized by states which have no outgoing state
transitions. Livelocks are any possible cycle of state transitions in which

3 Concurrency 25

in none of the states a threads is in the critical section. The critical section
is mutually exclusive if there is no state in which more than one thread is
in the critical section.

Example 3.2.2 We continue the previous example and construct the
state diagram corresponding to the given code snippet, were we
restrict ourselves to two threads for simplicity. We represent a state by
a tuple (?8 , @ 9 , 1) for 8 , 9 ∈ {1, 2, 3} and 1 ∈ {0, 1}. ?8 (respectively @ 9)
represents the instruction the corresponding thread is about to execute.
The represented instructions are:

I 8 = 1: while(flag!=false);
I 8 = 2: flag=true;
I 8 = 3: cnt++;

1 represents the value of flag.

We see that there is a path of state transitions leading to a state in
which both threads are in the critical section. Therefore, the code does
not provide mutual exclusion.

Example 3.2.3 (Dining Philosophers) The Dining Philosophers Prob-
lem was proposed by Dĳkstra in 1965. The problem consists of a table
with five plates, five forks (or chopsticks) and a big bowl of spaghetti.
Five philosophers, do nothing but think for a certain amount of time
and eat a very difficult kind of spaghetti which requires two forks to
eat. You can think of a philosopher as a thread, executing the following
piece of pseudo-code:

Algorithm 3.2: Dining Philosophers1 while(true){
2 think() ;
3 acquire_fork_on_left_side() ;
4 acquire_fork_on_right_side();
5 eat () ;
6 release_fork_on_right_side() ;
7 release_fork_on_left_side () ;

3 Concurrency 26

8 }

Assuming that the philosophers know how to think and eat, the
methods to pick up the forks and put down the forks again need to
satisfy the following constraints:

I Only one philosopher can hold a fork at a time and is permitted
to use only the forks to his/ her immediate right and left

I A philosopher needs to acquire both forks to his left and right
before he can start to eat

I It must be impossible for a deadlock to occur
I It must be impossible for a philosopher to starve waiting for a

fork
I It must be impossible for more than one philosopher to eat at

the same time

With a naive implementation there is a possibility to deadlock. In
the first step, each philosopher acquires the fork on their left side at
the same time. Now that every philosopher has one fork in their left
hand, they will try to pick up the fork on their right side, but this
fork is already held by their neighbor. In this state, everyone waits for
their neighbor on the right to release the fork, but since nobody has
acquired both forks to eat, this will never happen and the philosophers
will starve. The problem is that there is a cyclic dependency in the
case described above: P1 waits for P5, P5 waits for P4, P4 waits for
P3, P3 waits for P2, and P2 waits for P1. How can we make deadlocks
impossible? The correct solution is to break the cyclic dependency.
This means that one philosopher, e.g. philosopher P5 has to pick up
the forks in a different order. This could be achieved by introducing
a order between the forks, and all the philosophers have to pick up
the fork with the lower order first. This resolves the deadlock, because
there are no cyclic dependencies any more. Note that introducing a
timeout will not solve the problem: Even if the philosophers would
release the fork after some time of waiting, it could still happen that
they would do this at the same time. This would be a livelock, where
all philosophers would constantly acquire and release the fork on
their left, but nobody would get to eat.An alternative solution to avoid
deadlocks while achieving the mutual exclusion property would be
using exponential backoff. In this scenario a philosopher tries to take
the forks and if it fails he sleeps for a random amount of time in the
interval (0, B). The second time that he fails he will sleep for a random
amount of time in the interval (0, 2B) and this time doubles for every
successive failure. While this approach does not guarantees deadlock
freedom (if we are very unlucky, a deadlock could still occur), it is a
heuristic known to work very well in practice.

3.3 Mutex Implementation

In the previous section we discussed the importance of achieving mutual
exclusion in a multithreaded environment: we must be sure that a
mutable memory location which is shared by many threads will access
only by a single thread at a time. Bot how can we actually achieve mutual
exclusion (without forgetting other important properties such as deadlock

3 Concurrency 27

freedom)? In the following we will declare some variables as volatile. This
means that accesses to those variables do not count as data races. For
more details see the dedicated section in Chapter 4.

Peterson Lock

In the following, we assume all reads and writes are atomic. This assump-
tion is necessary, as while we do add the volatile keyword to all array
declarations, this only concerns the array references, not their entries. In
practice, one would declare the arrays to be arrays of AtomicIntegers, i.e.
as AtomicIntegerArray. This algorithm is arguably the most succint and
elegant mutual exclusion algorithm. It has the big advantage of being
starvation-free, but it has the drawback to work only to provide mutual
exclusion to two threads.

Algorithm 3.3: Peterson Lock1 class PetersonLock{
2 private volatile boolean[] flag = new boolean[2];
3 public volatile int victim;
4 public void lock(int id) {
5 flag[id] = true;
6 victim = id;
7 while(flag[1−id] && victim == id){}
8 }
9 public void unlock(int id) {
10 flag[id] = false
11 }
12 }

In a nutshell, the idea of the algorithm is the following:

I Set out flag, thereby indicating that we’re interested in entering the
critical section

I Indicate that the other thread is allowed to go first. The thread that
arrives at this statement first will enter the critical section first

I Wait until the other thread is either no longer interested in entering
the critical section or until we’re allowed to go first

I Indicate that we’re no longer interested

Theorem 3.3.1 The Peterson lock satisfies mutual exclusion

Proof. Suppose not. Consider the last executions of the lock() method by
threads � and �. Inspecting the code we see that

write�(flag[�] = CAD4) → write�(victim = �) → read�(flag[�]) → read�(victim) → CS�

and

write�(flag[�] = CAD4) → write�(victim = �) → read�(flag[�]) → read�(victim) → CS�

Assume, without loss of generality, that � was the last thread to write to
the victim field

write�(victim = �) → write�(victim = �)

3 Concurrency 28

This implies that � observed victim to be �. Since � nevertheless entered
its critical section, it must have observed the flag of � to be false, so we
have

write�(victim = �) → read�(flag[�] == 5 0;B4)

And with the transitivity of→we get

write�(flag[�] = CAD4) → write�(victim = �) → write�(victim = �) → read�(flag[�] == 5 0;B4)

It follows that write�(flag[�] − CAD4) → read�(flag[�] == 5 0;B4). This
observation yields a contradiction because no other write to the flag of �
was performed before the critical section executions.

Theorem 3.3.2 The Peterson lock is starvation free.

Proof. Suppose not. Suppose (without loss of generality) that thread �
runs forever in the lock()method. It must be executing thewhile statement,
waiting for the flag of thread � to become false or the victim to be set to �.
What is � doing while � fails to make progress? Perhaps � is repeatedly
entering and leaving its critical section. If so, however, then � sets victim
to � as soon as it reenters the critical section. Once victim is set to �, it
does not change, and � must eventually return from the lock() method, a
contradiction. So it must be that � is also stuck in the lock()method call,
waiting until either the flag of � becomes false or victim is set to �.But
victim cannot be both � and �, a contradiction.

Note that since we proved that Peterson lock is starvation free, this
automatically implies deadlock-freedom.

Filter Lock

We now consider the first mutual exclusion protocol that work for =
threads, where = is greater than two: the filter lock, which is a direct
generalization of the Peterson lock to multiple threads. The filter lock
creates =−1 "waiting rooms", that a threadmust traverse before acquiring
the lock. Levels satisfy two important properties:

I At least one threads trying to enter level ; succeeds
I If more than one thread is trying to enter level ;, then at least one

is blocked, i. e. it continues to wait at that level.

Algorithm 3.4: Filter Lock1 class FilterLock{
2 volatile int [] level ;
3 volatile int [] victim;
4 volatile int n;
5 public FilterLock(int n){
6 this .n = n;
7 level = new int[n];
8 victim = new int[n];
9 for(int i = 0; i < n; i++){
10 level [i] = 0;

3 Concurrency 29

11 }
12 }
13 public void lock() {
14 int me = ThreadID.get();
15 for(int i = 1; i < n; i++){
16 level [me] = i ;
17 victim[i] = me;
18 while((∃k!=me)(level[k]>=i && victim[i]==me){}
19 }
20 }
21 public void unlock(){
22 int me = ThreadID.get();
23 level [me] = 0;
24 }
25 }

Figure 3.1: There are = − 1 levels threads
pass through, he last ofwhich is the critical
section. There are at most = threads that
pass concurrently into level 0, = − 1 into
level 1 and son on, that only one enters the
critical section at level = − 1.

The Peterson Lock uses a two element boolean flag array to indicate
whether a thread is trying to enter the critical section. The Filter Lock
generalizes this notion with an =−element integer level array, where the
value of level[A] indicates the highest level that thread � is trying to enter.
Each thread must pass through = − 1 levels of "exclusion" to enter its
critical section. Each level ; has a distinct victim field used to "filter out"
one thread, excluding it from the next level. Initially a thread � is at
level zero. We say that � is at level 9 for 9 > 0, when it last completes the
waiting loop in line 18 with level[A]≥ 9. So a thread at level 9 is also at
level 9 − 1 an so on.

Theorem 3.3.3 For 9 between 0 and = − 1, there are at most = − 9 threads at
level 9.

Proof. By induction on 9. The base case, where j = 0, is trivial. For the
induction step, the induction hypothesis implies that there are at most
= − 9 + 1 threads at level 9 − 1 To show that at least one thread cannot
progress to level j, we argue by contradiction: assume there are = − 9 + 1
threads at level 9. Let � be the last thread at level 9 to write to victim[j].
Because � is last, for any other � at level 9 we have

write�(victim[9]) → write�(victim[9])

Inspecting the code, we see that � writes level[B] before it writes to

3 Concurrency 30

victim[j], so

write�(level[�] = 9) → write�(victim[9]) → write�(victim[9]) → read�(level[�])

Because � is at level 9, every time � reads level[B], it observes a value
greater than or equal to 9, implying that � could not have completed its
waiting loop in line 18, a contradiction.

By observing the statement of the previous theorem, it is immediate to
realise that the Filter Lock algorithm satisfiesmutual exclusion.

Theorem 3.3.4 The Filter Lock is starvation-free.

Proof. We argue by reverse induction on the levels. The base case, level
=−1 is trivial, because it contains at themost one thread. For the induction
hypothesis, assume that every thread that reaches level 9 + 1 or higher,
eventually enters (and leaves) its critical section. Suppose � is stuck at
level 9. Eventually, by the induction hypothesis, there are no threads at
higher levels. Once � sets level[A] to 9, then any thread at level 9 − 1 that
subsequently reads level[A] is prevented from entering level 9. Eventually,
no more threads enter level 9 from lower levels. All threads stuck at level
9 are in the waiting loop at Line 18, and the values of the victim and
level fields no longer change. We now argue by induction on the number
of threads stuck at level 9. For the base case, if � is the only thread at
level 9 or higher, then clearly it will enter level 9 + 1. For the induction
hypothesis, we assume that fewer than : threads cannot be stuck at level
9. Suppose threads � and � are stuck at level 9. � is stuck as long as it
reads victim[j] = A, and � is stuck as long as it reads victim[j] = B. The
victim field is unchanging, and it cannot be equal to both � and �, so one
of the two threads will enter level 9 + 1, reducing the number of stuck
threads to : − 1, contradicting the induction hypothesis.

Note that since we proved that Filter lock is starvation free, this automat-
ically implies deadlock-freedom.

The starvation-freedom property guarantees that every thread that calls
lock() eventually enters the critical section, but it makes no guarantees
about how long thismay take. Ideally (and very informally) if� calls lock()
before �, then � should enter the critical section before �. Unfortunately,
using the tools at hand we cannot determine which thread called lock()
first. Instead, we split the lock()method into two sections of code.

1. A doorway section, whose execution interval �� consists of a
bounded number of steps

2. A waiting section, whose execution interval,� may take an un-
bounded number of steps.

The requirement that the doorway section always finish in a bounded
number of steps is a strong requirement. Here is how we define fair-
ness.

Definition 3.3.1 (Fairness) A lock is first-come-first-served if, whenever,
thread � finishes its doorway before thread � starts its doorway, then �

3 Concurrency 31

cannot be overtaken by �: if � 9

�
→ �:

�
then �(9

�
→ �(:

�
for threads � and

� and integers 9 and :.

Bakery Algorithm

Until nowwehave seen the PetersonLock (which implements a starvation-
free protocol for mutual exclusion in the limited case of two threads) and
the Filter Lock (which generalizes the Peterson Lock to = threads). A
drawback of the Filter Lock is that is not fair. Now let’s take a loot at the
following algorithm, known as Lamport’s Bakery Algorithm.

Algorithm 3.5: Filter Lock1 class Bakery implements Lock{
2 boolean[] flag ;
3 label [] label ;
4 public Bakery(int n){
5 flag = new boolean[n];
6 label = new label[n];
7 for(int i = 0; i < n; i++){
8 flag[i] = false ;
9 label [i] = 0;
10 }
11 }
12 public void lock() {
13 int i = ThreadID.get();
14 flag[i] = true;
15 label [i] = max(label[0], ..., label [n−1])+1;
16 while(∃ k != 1 with (flag[k] && (label[k],k) << (label [i], i))

) {}
17 }
18 public void unlock(){
19 flag[ThreadID.get()] = false ;
20 }
21 }

The Bakery lock algorithmmaintains the first-come-first- served property
by using a distributed version of the number-dispensing machines often
found in bakeries: each thread takes a number in the doorway, and
then waits until no thread with an earlier number is trying to enter
it. In the Bakery lock, flag[A] is a Boolean flag indicating whether �
wants to enter the critical section, and label[A] is an integer that indicates
the thread’s relative order when entering the bakery, for each thread
�. Each time a thread acquires a lock, it generates a new label[] in two
steps. First, it reads all the other threads’ labels in any order. Second, it
reads all the other threads’ labels one after the other (this can be done
in some arbitrary order) and generates a label greater by one than the
maximal label it read. We call the code from the raising of the flag (Line
14) to the writing of the new label[] (Line 15) the doorway. It establishes
that thread’s order with respect to the other threads trying to acquire
the lock. If two threads execute their doorways concurrently, they may
read the same maximal label and pick the same new label. To break
this symmetry, the algorithm uses a lexicographical ordering « on pairs
of label[] and thread ids. In the waiting part of the Bakery algorithm

3 Concurrency 32

(Line 16), a thread repeatedly rereads the labels one after the other in
some arbitrary order until it determines that no thread with a raised
flag has a lexicographically smaller label/id pair. Since releasing a lock
does not reset the label[], it is easy to see that each thread’s labels are
strictly increasing. Interestingly, in both the doorway andwaiting sections,
threads read the labels asynchronously and in an arbitrary order, so that
the set of labels seen prior to picking a new one may have never existed
in memory at the same time. Nevertheless, the algorithm works.

Theorem 3.3.5 The Bakery Lock is deadlock free.

Proof. Some waiting thread � has the unique least (label[A],A) pair, and
that thread never waits for another thread.

Theorem 3.3.6 The Bakery Lock algorithm is first-come-first-served.

Proof. If �’s doorway preeceds �’s �� → �� then �’s label is smaller
since

write�(label[�]) → read�(label[�]) → write�(label[�]) → read�(flag[�])

so � is locked out while flag[A] is true.

Note that any algorithm that is both deadlock-free and first-come-first-
served is also starvation-free.

Theorem 3.3.7 The Bakery algorithm satisfies mutual exclusion.

Proof. Suppose not. Let� and � be two threads concurrently in the critical
section. Let labeling� and labeling� be the last respective sequences of
acquiring new labels prior to entering the critical section. Suppose that
(label[A],A) «(label[B],B). When � successfully completed the test in its
waiting section, it must have read that flag[A]was false or that (label[B],B)
« (label[A],A). However, for a given thread, its id is fixed and its label[]
values are strictly increasing, so � must have seen that flag[A]was false.
It follows that

labeling� → read�(flag[�]) → write�(flag[�]) → labeling�

which contradicts the assumption that (label[�], �) << (label[�], �)

Spinlock

When implementing mutual exclusion, there are two different alternative
choices on what to do when we cannot immediately acquire a lock. The
first choice is to continue trying to acquire the lock. This is called spinning
or busy waiting. The Filter lock and the bakery lock are two examples.
The second choice is called blocking and essentially means that if a thread
cannot acquire the lock it gets de-scheduled by the operating system
(it goes to sleep) and is woken up after a certain time. Which strategy
should we choose? In general a pure spinlock only makes sense if the

3 Concurrency 33

duration that any process holds the lock is short, otherwise, it’s better to
block. It is also possible to come up with a mixed strategy, which begins
with spinning and, if it unable to acquire the lock for a certain amount
of time, it blocks. Here is where the spin-block problem come into play:
we want to come up with a strategy for how long a thread should spin
waiting to acquire a lock before giving up and blocking, given particular
values for the cost of blocking, and the probability distribution of lock
hold times. The competitive spinning theorem tells that in absence of any
other information about the lock hold time, spinning for a time equal
to the cost of putting the thread to sleep and waking it up again results
in overhead at most twice that the optimal offline algorithm (which has
perfect knowledge about the future) can do.

Unfortunately, our previous lock implementations (although we proved
them to logically work) won’t work on most modern processors and
compilers.This is because the compiler and the underlying hardware
architecture do not guarantee memory operations to occur in-order. We
tried to somewhat alleviate this issue by introducing the volatile keyword,
but this only guarantees reads and writes to the array reference to be
in-order, not to the entries of this array. We therefore introduce mutex
implementations using two atomic operations: TAS and CAS (which
will be discussed in greater detail in the further section about atomic
operations). With the use of those atomic operations we obtain the
following locks:

Algorithm 3.6: TAS Lock1 class TASLock{
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 while(state .getAndSet(true)){}
5 }
6 public void unlock(){
7 state . set (false) ;
8 }
9 }

Algorithm 3.7: TTAS Lock1 class TTASLock{
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 do{
5 while(state .get ()) {}
6 }while(! state .compareAndSet(false, true));
7 }
8 public void unlock(){
9 state . set (false) ;
10 }
11 }

Both implementations are correct, but unfortunately they perform poorly.
The explanation for this behaviour can be found in modern hardware
architecture:

I Calls to getAndSet() and set() force other processors to invalidate
their cached copies of the state variable. This means that the next
call to get() and getAndSet()will need to read from main memory.

3 Concurrency 34

Continuing on like this, it’s easy to see that nearly each call will
read from main memory.

I Nearly each call reading from main memory also means that the
shared bus will be under heavy use.This means that all threads
using the bus will be slowed down considerably.

One possibility to alleviate this problem would be to implement an
exponential backoff. This means that every time we don’t manage to
acquire the lock, we wait for a random amount of time < ∈ [0, CG], where
G is the number of times we have failed to acquire the lock and C is the
initial wait time.

3.4 Locks: an high level perspective

In the second section of this chapter we introduced the concept of mutual
exclusion and we argued that a correct implementation of a mutual
exclusion algorithm has to be deadlock-free. Before we dive into more
details about how locks can be used in practice, we take a more formal
look into deadlocks. There are two purposes of doing this: first, deadlocks
are one of the major (and worst) issues in parallel programs; second,
it can aware the reader to the fact that one has to think about the role
of locks in his code. Just putting the keyword synchronized somewhere
can have disastrous effects. Before we set an example, we recall that
a deadlock occurs when two or more processes are mutually blocked
because each process waits for another of these processes to proceed.

Example 3.4.1 (Bank account) Consider a method to transfer money
between bank accounts.

Algorithm 3.8: Bank Account1 class BankAccount{
2 synchronized void withdraw(int amount){...}
3 synchronized void deposit(int amount){...}
4 synchronized void transferTo(int amount, BankAccount a){
5 this .withdraw(amount);
6 a.deposit(amount);
7 }
8 }

The problem in this code happens in the scenario of G that wants to
transfer a certain amount to H and, at the same time, also H wants to
transfer money to H. In this case it could happen that the bank account
G first acquires the lock for G and then the bank account H acquires
the lock for H. If this happens we have a deadlock: G is waiting for a
resource held by H (i. e. the lock for H) and H is waiting for a resource
held by G (i. e. the lock for G).

How can we formally reason about this scenario? We can represent
the situation visually. In our visual representation we have a graph
� = (+, �) where + is the set of threads union the set of resources (in
this case locks) and the directed edges connect a thread to a resource if
a thread attempts to acquire that resource, and a resource to a thread
if the resource is held by the thread. We have a deadlock for threads

3 Concurrency 35

)1 , . . . ,)= if the graph describing the relation of)1 , . . . ,)= and resources
'1 , . . . , '< contains a cycle.

Now that we have understood how to formally detect a deadlock, we have
to find a way to avoid it. Introducing a global lock would not be a good
solution because it would lead back to the sequential execution. What
one should do is introducing a global ordering of resources. An algorithm
for the situation of the previous example would be simply to use an ID
for each single account and lock accordingly, as shown in the following
piece of code.

Algorithm 3.9: Bank Account1 class BankAccount{
2 synchronized void withdraw(int amount){...}
3 synchronized void deposit(int amount){...}
4 synchronized void transferTo(int amount, BankAccount a){
5 if (to .accountID<this.accountID){
6 syncrhonized(this){
7 syncrhonized(to){
8 this .whitdraw(amount);
9 to .deposit(amount);
10 }
11 }
12 } else {
13 synchronized(to){
14 synchronized(this){
15 this .withdraw(amount);
16 to .deposit(amount);
17 }
18 }
19 }
20 }
21 }

When a thread encounters the synchronized keyword, it will always first
attempt to obtain the lock to the specified object. Until it obtains the
lock, it will block. Every Java object, including classes itself, not just
their instances, has an associated lock, meaning that we can use it to
enforce mutual exclusion using synchronized. We can also include the
synchronized in the method signature. This means that before proceeding
with execution of the method body, we will first acquire the lock on
the this object, which is either an instance of the class or the class itself
if the method is declared static. Note that Java locks are reentrant, i. e.
they can be acquired multiple times by the same thread. When creating
a concurrent program with mutable, shared state, we think in terms
of what operations need to be atomic. Locks do pretty much just that:
Changes made inside of a synchronized block appear to other threads
(provided they also acquire the lock before readingmutable, shared fields)
to take place instantaneously. Nonetheless, locks are not all rainbows and
sunshine. When we have large critical sections which are all protected
by locks, we reduce the parallelizable fraction in our program by a lot.
Thinking back to Amdahl’s Law, we know that this drastically reduces
the possible speedup of our program. In the remainder of this section we
will see different ways to use locks properly. In the next section, instead,
we will focus on lock granularity, i. e.we will reflect about the efficiency

3 Concurrency 36

implications of our choices.

Semaphores

As we have seen, a mutual exclusion lock guarantees that only one thread
at a time can enter a critical section. If another thread wants to enter the
critical section while it is occupied, then it blocks, suspending itself until
another thread notifies it to try again. A Semaphore is a generalization of
mutual exclusion locks. Each Semaphore has a capacity, denoted by 2
for brevity. Instead of allowing only one thread at a time into the critical
section, a semaphore allows at most 2 threads, where the capacity 2 is
determined when the semaphore is initialized. The Semaphore class of
the next code snippet provides two methods: a thread calls acquire() to
request permission to enter the critical section, and release() to announce
that it is leaving the critical section. The Semaphore itself is just a counter:
it keeps track of the number of threads that have been granted permission
to enter. If a new acquire() call is about to exceed the capacity 2, the calling
thread is suspended until there is room.When a thread leaves the critical
section, it calls release() to notify a waiting thread that there is now
room.

Algorithm 3.10: Semaphore Implementa-
tion

1 public class Semaphore{
2 int capacity;
3 int state ;
4 Lock lock;
5 Condition condition;
6 public Semaphore(int c){
7 capacity = c;
8 state = 0;
9 lock = new ReentrantLock():
10 condition = lock.newCondition();
11 }
12 public void acquire() {
13 lock.lock() ;
14 try{
15 while(state == capacity){
16 condition.await() ;
17 }
18 state++;
19 } finally {lock.unlock(); }
20 }
21 public void release () {
22 lock.lock() ;
23 try{
24 state−−;
25 condition.signalAll () ;
26 } finally {lock.unlock(); }
27 }
28 }

3 Concurrency 37

Barriers

We now want to go one step further. We wish to create a barrier which
blocks all threads up until a certain threshold # . Once the threshold
has been reached all threads are allowed to continue execution. We
distinguish between non-reusable and reusable barriers.

The non-reusable barrier has a relatively simple implementation, which
can be seen in the next code snippet. Each arriving thread increments
the counter (taking the lock to avoid race conditions) and attempts to
acquire the barrier semaphore, thereby going into a blocked state. Once
all threads have arrived, i.e. count == threshold, the barrier semaphore is
set to 1, allowing one thread to pass. Whenever a thread passes the barrier
it immediately releases it again so that the next thread may proceed
with its execution. This method of acquiring and releasing the barrier
semaphore is called a turnstyle.

1 class SimpleBarrier{
2 private int threshold;
3 private int count = 0;
4 private Semaphore barrier = new Semaphore(0);
5 public SimpleBarrier(int threshold){
6 this . threshold = threshold;
7 }
8 public void await() {
9 synchronized(this){
10 count++;
11 }
12 if (count == threshold) barrier . release () ;
13 try{
14 barrier .acquire() ;
15 }catch(InterruptedException e){}
16 barrier . release () ;
17 }
18 }

The reusable barrier is implemented in such a way that it can be reused
once all waiting threads are released, i.e. it assumes no additional threads
call the await()method before all waiting threads have been released.
The reusable barrier consists of two parts. First, the threads increment
the counter, attempt to acquire the barrier1 semaphore and go into a
blocking state. Once the threshold is reached the barrier1 semaphore is
incremented so that the threads are allowed to pass the turnstyle and
enter the second part of the barrier. Additionally, the barrier2 semaphore
is decremented, thereby making the second part of the barrier behave
identically to the first part, only nowdecreasing the counter. In the second
part of the barrier, threads will be allowed to pass the turnstyle once the
counter’s value is 0.Note that once all threads have exited the barrier, all
values have been restored to their original state, thereby allowing the
barrier to be reused again.

3 Concurrency 38

Producer Consumer Pattern

In this paragraph we study the Producer Consumer Pattern, a fundamental
parallel programming pattern that can be used to build data-flow parallel
programs. We actually have already encountered such a pattern in our
semaphore implementation: in that case entering the critical section
would in a certain sense mean "consuming the resource" and leaving the
critical section "producing the resource". Here we study another example:
a concurrent queue, where a set of producer threads enqueue elements
in the queue and a set of consumer threads dequeues elements from
the queue. Here we assume that a queue has a maximum size, i. e. we
cannot put an unbounded number of elements in the queue. A first idea
is to implement it with semaphores, as shown in the following code
snippets.

Algorithm 3.12: Concurrent queue1 class Queue{
2 int in , out, size ;
3 int [] buffer ;
4 Semaphore nonEmpty, nonFull, manipulation;
5
6 Queue(int s){
7 size = s ;
8 buffer = new int[size];
9 in = out = 0;
10 nonEmpty = new Semaphore(0);
11 nonFull = new Semaphore(size);
12 manipulation = new Semaphore(1);
13 }
14 void enqueue(int x){
15 try{
16 manipulation.acquire();
17 nonFull.acquire() ;
18 buffer[in] = x;
19 in = (in + 1) % size;
20 } catch(InterruptedException ex){}
21 finally {
22 manipulation.release();
23 nonEmpty.release();
24 }
25 }
26 int dequeue(){
27 int x = 0;
28 try{
29 manipulation.acquire();
30 nonEmpty.acquire();
31 x = buffer[out];
32 out = (out − 1) %size;
33 } catch(InterruptedException ex){}
34 finally {
35 manipulation.release();
36 nonFull.release () ;
37 }
38 return x;

3 Concurrency 39

39 }
40 }

Although at first sight this implementation might look correct, it has
a (big) problem: it can lead to a deadlock in the situation where the
Consumer requires nonEmpty, which is owned by the Producer which
requires manipulation which is owned by the Consumer. In principle, by
swapping lines 29 and 30, the code would be correct, but the goal of this
example was showing that semaphores are unstructured: a correct use
requires a high level of discipline. In this scenario a new abstract data
type called Monitor comes to rescue.

Monitors

Monitors provide, in addition to mutual exclusion, a useful mechanism
to check conditions with the following semantics. If a condition does not
hold:

I Release the monitor lock
I Wait for the condition to become true
I Signalling mechanisms to avoid busy loops

In Java this is given by adding to the intrinsic lock (synchronized) of an
object the following methods:

I wait(): the current thread waits until it is signaled (via notify).
I notify(): wakes up one waiting thread (an arbitrary one).
I notifyAll(): wakes up all waiting threads

With the help of monitors, implementing the concurrent queue of the
previous paragraph becomes (almost) trivial.

Algorithm 3.13: Concurrent queue1 class Queue{
2 int in , out, size ;
3 int [] buffer ;
4
5 Queue(int s){
6 size = s ;
7 buffer = new int[size];
8 in = out = 0;
9 }
10 void enqueue(int x){
11 while(isFull ()) {
12 try{
13 wait() ;
14 }catch(InterruptedException e){}
15 doEnqueue(x);
16 notifyAll () ;
17 }
18 }
19 int dequeue(){
20 int x;
21 while(isEmpty()){
22 try{

3 Concurrency 40

23 wait() ;
24 } catch(InterruptedException e){}
25 x = doDequeue();
26 notifyAll () ;
27 return x;
28 }
29 }
30 }

Here some methods are given as a blackbox, but the intuitive (sequential)
version works. Pay attention to the fact that at line 21 an if statement
would not be sufficient: if multiple threads would enter to the wait zone,
then all of them would enter to the critical section when woken up, and
this would not provide mutual exclusion. Moreover, since threads are
managed by the operating system, it could happen that a thread that
is waiting gets woken up without a corresponding notify signal. We
conclude this paragraph with another important feature of Java locks,
the Condition interface, which offer the following methods:

I await(): the current thread waits until condition is signaled
I signal(): wakes up one thread waiting on this condition
I signalAll(): wakes up all threads waiting on this condition

We illustrate them by mean of an example.

Example 3.4.2 (The Sleeping Barber) The analogy is based upon a
hypothetical barber shop with one barber. The barber has one barber’s
chair in a cutting room and a waiting room containing a number of
chairs in it. When the barber finishes cutting a customer’s hair, he
dismisses the customer and goes to the waiting room to see if there
are others waiting. If there are, he brings one of them back to the chair
and cuts their hair. If there are none, he returns to the chair and sleeps
in it. Each customer, when they arrive, looks to see what the barber is
doing. If the barber is sleeping, the customer wakes him up and sits
in the cutting room chair. If the barber is cutting hair, the customer
stays in the waiting room. If there is a free chair in the waiting room,
the customer sits in it and waits their turn. If there is no free chair, the
customer leaves.

In order to solve this problem we introduce two additional variables
< and = with the following properties:

I < ≤ 0 iff the buffer is full and < clients are waiting
I = ≤ 0 iff the buffer is empty and = barbers are waiting

We get the following implementation.

Algorithm 3.14: Concurrent queue1 class Queue{
2 int in=0, out=0, size ;
3 long buf [];
4 final Lock lock = new ReentrantLock();
5 int n = 0; final Condition notFull=lock.newCondition();
6 int m;
7 final Condition notEmpty = lock.newCondition();

3 Concurrency 41

8 public Queue(int s){
9 size = s ;
10 m = s−1;
11 buf = new long[size];
12 }
13 void enqueue(int x){
14 lock.lock() ;
15 m−−; if (m<0)
16 while (isFull ())
17 try { notFull .await() ; }
18 catch(InterruptedException e){}
19 doEnqueue(x);
20 n++;
21 if (n<=0) notEmpty.signal();
22 lock.unlock();
23 }
24 long dequeue(){
25 long x;
26 lock.lock() ;
27 n−−; if (n<0)
28 while (isEmpty())
29 try { notEmpty.await(); }
30 catch(InterruptedException e){}
31 x = doDequeue();
32 m++;
33 if (m<=0) notFull.signal() ;
34 lock.unlock();
35 return x;
36 }
37 }

Readers-Writers Lock

Many shared objects have the property that most method calls, called
readers, return information about the object’s state without modifying
the object, while only a small number of calls, called writers, actually
modify the object. There is no need for readers to synchronize with one
another; it is perfectly safe for them to access the object concurrently.
Writers, on the other hand, must lock out readers as well as other writers.
A readers–writers lock allows multiple readers or a single writer to enter
the critical section concurrently. We use an interface that exports two
lock objects: the read lock and the write lock. They satisfy the following
safety properties:

I No thread can acquire the write lock while any thread holds either
the write lock or the read lock

I No thread can acquire the read lock while any thread holds the
write lock

Naturally, multiple threads may hold the read lock at the same time.

We consider a sequence of increasingly sophisticated reader–writer lock
implementations. The SimpleReadWriteLock class in the following code
snippet uses a counter for the number of readers and another one for the

3 Concurrency 42

number of writers. If there are no writers in the critical section, readers
are allowed to enter. However a writer, has to wait until all readers are
finished.

Algorithm3.15: Read-Write Lockwith pri-
ority to the readers

1 class RWLock{
2 int writers = 0;
3 int readers = 0;
4
5 synchronized void acquire_read(){
6 while(writers>0){
7 try{wait() ; }
8 catch(InterruptedException e){}
9 }
10 readers++;
11 }
12
13 synchronized void release_read(){
14 readers−−;
15 notifyAll () ;
16 }
17
18 synchronized void acquire_write(){
19 while(writers>0 || readers>0){
20 try{wait() ; }
21 catch(InterruptedException e){}
22 }
23 writers++;
24 }
25
26 synchronized void release_write(){
27 writers−−;
28 notifyAll () ;
29 }
30 }

Even though the SimpleReadWriteLock algorithm is correct, it is still not
quite satisfactory. If readers are much more frequent than writers, as is
usually the case,then writers could be locked out for a long time by a
continual stream of readers. In order to alleviate this problem, we could
introduce a variable that keeps track of how many writers are waiting to
enter the critical section. If there are any, we pause the reader and we
let the writers do their work. The idea is exposed in the following code
snippet.

Algorithm3.16: Read-Write Lockwith pri-
ority to the writers

1 class RWLock{
2 int writers = 0;
3 int readers = 0;
4 int writersWaiting = 0;
5
6 synchronized void acquire_read(){
7 while(writers>0 || writersWaiting>0){
8 try{wait() ;}
9 catch(InterruptedException e){}

3 Concurrency 43

10 }
11 readers++;
12 }
13
14 synchronized void release_read(){
15 readers−−;
16 notifyAll () ;
17 }
18
19 synchronized void acquire_write(){
20 writersWaiting++;
21 while(writers>0 || readers>0){
22 try{wait() ; }
23 catch(InterruptedException e){}
24 }
25 writersWaiting−−;
26 writers++;
27 }
28
29 synchronized void release_write(){
30 writers−−;
31 notifyAll () ;
32 }
33 }

We have seen two different locks: one which gives strong priority to the
readers and another one which gives strong priority to the writers. Of
course, both models are not fair. But what notion of fairness should we
consider? A possibility would be:

I When a writer finishes, a number : of currently waiting readers
may pass.

I When the : readers have passed, the next writer may enter (if any),
otherwise further readers may enter until the next writer enters
(who has to wait until current readers finish).

This fair(er) idea is implemented in the following snippet. We have
introduced a variablewritersWaiting()which counts the number ofwriters
trying to enter the critical section (similarly for readersWaiting()).Moreover
we have a variable writersWait to keep track of the number of the readers
that the writer has to wait (hence, at the beginning this variable will be
set to :).

Algorithm 3.17: A fair(er) Read-Write
Lock

1 class RWLock{
2 int writers = 0;
3 int readers = 0;
4 int writersWaiting = 0;
5 int readersWaiting = 0;
6 int writersWait = k;
7
8 synchronized void acquire_read(){
9 readersWaiting++;
10 while(writers>0 || (writersWaiting>0 && writersWait<=0)){
11 try{wait() ;}

3 Concurrency 44

12 catch(InterruptedException e){}
13 }
14 readersWaiting−−;
15 writersWait−−;
16 readers++;
17 }
18
19 synchronized void release_read(){
20 readers−−;
21 notifyAll () ;
22 }
23
24 synchronized void acquire_write(){
25 writersWaiting++;
26 while(writers>0 || readers>0 || writersWait>0){
27 try{wait() ; }
28 catch(InterruptedException e){}
29 }
30 writersWaiting−−;
31 writers++;
32 }
33
34 synchronized void release_write(){
35 writers−−;
36 writersWait = k;
37 notifyAll () ;
38 }
39 }

If the parameter : reflects the proportion of reads and writes in this
context, then the previous lock can be considered fair (or, at least, much
more fair than the previous versions we presented).

3.5 Lock granularity

The size of our critical section greatly influences the possible speedup
we can achieve through parallelization. When programming with locks,
it’s common practice to start of by essentially wrapping every-thing that
remotely resembles a critical section in one huge lock. This is called
coarse-grained locking. In this section, we introduce different locking
strategies which, with some customization, can be applied to many
different concurrent data structures. We introduce these strategies at the
hand of sorted linked lists, which implement an add(x), a remove(x) and a
contains(x) method.

As mentioned the first idea is to take the sequential method of the data
structure and synchronize all his methods. The disadvantage here is the
considerable size of the critical section. As all the methods share a single
lock and start by acquiring and end by releasing it, this implementation
allows for barely any concurrency whatsoever.However, this strategy
does have one advantage: its simplicity. Implementing it does not really
require any effort on the side of the programmer. Now we move to more
involved versions.

3 Concurrency 45

Fine-Grained Locking

As a first step of improving coarse-grained locking, we can lock individual
elements instead of the entire data structure. As a thread traverses the
data structure, it locks each node when it first visits it and releases it
once it has acquired the lock for the next node. This method of locking is
called hand-over-hand locking. This method allows threads to traverse the
data structure in a pipelined fashion.

In order to avoid deadlocks, it’s important that all threads acquire the
locks in some predefined order, e.g. in the case of the sorted linked list,
all threads start at the head and do not try to ”skip” nodes.

Example 3.5.1 In order to avoid deadlocks, it’s important that all
threads acquire the locks in some predefined order. In the case of
sorted linked lists, this requirement is easily met by always starting at
the head sentinel and only proceeding in a hand-over-hand fashion.

Algorithm 3.18: Fine-grained locking re-
move method

1 public boolean remove(T item){
2 int key = item.hashCode();
3 head.lock() ;
4 Node pred = head;
5 try{
6 Node curr = pred.next;
7 curr.lock() ;
8 try{
9 while(curr.key < key){
10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock() ;
14 }
15 if (key == curr.key){
16 pred.next = curr.next;
17 return true;
18 } else return false ;
19 } finally {curr.unlock(); }
20 } finally {pred.unlock(); }
21 }

We’ve now implemented an actual concurrent data structure, in the
sense that several threads can actually operate on it simultaneously. But
unfortunately, this strategy is still far from perfect. As threads iterate
over this data structure in a pipelined fashion, the slowest thread sets
the tempo for all threads that immediately follow it, meaning that a
potentially ”fast” thread might experience considerable slowdown. In
addition, for large data structures, there is still a potentially long chain of
lock acquisitions and releases.

3 Concurrency 46

Optimistic Locking

With optimistic locking, we take somewhat of a risk. We iterate the data
structure without taking any locks. Once we’ve found the required
elements we lock them and check if everything is still correct. If we find
that in between finding the elements and taking the locks the state of the
data structure changed to one where we can not execute our operation
reliably anymore, we start over. As such conflicts are rare, we consider
this approach to be optimistic. Implementing such a verification method
is non-trivial and requires careful thought. What state do we, as an
operating thread, expect and how can we check that this expected state
actually holds?

Example 3.5.2 In the case of the sorted linked list, we verify the
following two conditions:

I The curr node, i.e. the node we’re operating on, is still reachable.
I pred still points to curr, i.e. the two nodes we’re about to operate

on are actually the ones we should operate on.

Algorithm 3.19: Optimistic locking re-
move method

1 public boolean remove(T item){
2 int key = item.hashCode();
3 while(true){
4 Node pred = head;
5 Node curr = pred.next;
6 while(curr.key < key){
7 pred = curr;
8 curr = curr.next;
9 }
10 pred.lock() ; curr.lock() ;
11 try{
12 if (validate(pred, curr)) {
13 pred.next = curr.next;
14 return true;
15 } else return false ;
16 } finally {pred.unlock(); curr.unlock(); }
17 }
18 }
19 public boolean validate(Node pred, Node curr){
20 Node node = head;
21 while(node.key <= pred.key){
22 if (node == pred) return pred.next == curr;
23 node = node.next;
24 }
25 return false ;
26 }

We’ve now been able to alleviate most issues. Nonetheless, a few remain.
First, by always calling validate, we’re essentially iterating the list twice.
If we then have a high amount of thread contention, i.e. a lot of threads
operating on the same area of the data structure, these validate will often
return false, thereby forcing most threads to re-iterate the entire list.
Finally, we would like an operation as simple as the containsmethod to

3 Concurrency 47

not have to acquire any locks whatsoever, as this does seem like a slight
overkill.

Lazy Locking

Lazy synchronization builds on top of optimistic synchronization by adding
a boolean marked field to each node, which, when false, it holds the
invariant that

I the node is in the set and
I the node is reachable.

The removemethod nowfirst lazily removes a node by setting itsmarked bit,
then physically removes it, e.g. by redirecting the pointer from the previous
node. We adjust the validatemethod so that it only checks whether the
marked bit is set and whether the local state is still as expected. Therefore,
the remainder of the add and removemethods can be left the same. Finally,
we change the contains method such that it simply iterates the data
structure without taking any locks and, if it finds the specified node,
checks whether it’s marked or not.

Example 3.5.3 The concrete implementation of the sorted linked list
according to the lazy locking strategy now looks as follows.

Algorithm 3.20: Lazy locking remove
method

1 public boolean remove(T item){
2 int key = item.hashCode();
3 while(true){
4 Node pred = head;
5 Node curr = pred.next;
6 while(curr.key < key){
7 pred = curr;
8 curr = curr.next;
9 }
10 pred.lock() ; curr.lock() ;
11 try{
12 if (validate(pred, curr){
13 if (key == curr.key){
14 curr.marked = true;
15 pred.next = curr.next;
16 return true;
17 } else return false ;
18 }
19 } finally {pred.unlock(); curr.unlock(); }
20 }
21 }
22 public boolean validate(Node pred; Node curr){
23 return !pred.marked && !curr.marked && pred.next == curr;
24 }

3 Concurrency 48

3.6 Atomic Operations

We have already seen two main ways to implement locks. The first
approach are spinlocks, that by actively trying to acquire the lock waste
computational resources and, in the case of long-lived contention, degrade
performance. The second approach is using locks that, when the thread
fails to acquire them, the thread goes to sleep until something changes.
This locks require the support from the operating system scheduler
and introduce a significant overhead. Of course, hybrid solutions that
first spin on the lock and after a while go to sleep also exist. In general
locks have several disadvantages: they are pessimistic by design (they
assume the worst and enforce mutual exclusion, i. e. they assume that
there will be several conflicts), they introduce overhead for each lock
taken even in the uncontended case (which, by Amdahl’s law, causes
significant performance degradation), and have several problems in
special cases such as delay of the thread in the critical section. Moreover
the programmer has to avoid introducing problems such as deadlocks,
livelocks and starvation.

In this section we will examine another way to enforce mutual exclusion
without locking: lock-freeprogramming (which, as shouldbe intuitive from
the previous considerations, is also called optimistic concurrency control).
Recall that lock-freedom means that at least one thread always makes
progress even if other threads run concurrently. Lock-freedom implies
system-wide progress but not freedom from starvation. A stronger
concept in this sense would be wait-freedom, which requires that all
threads eventually make progress. In non-blocking algorithms the failure
or suspension of one thread cannot cause failure or suspension of another
thread.

In order to write lock-free programs, we need atomic operations. Two very
important examples are the Test-And-Set (TAS) and the Compare-And-
Swap (CAS) operations. Their semantics is described in the following
pseudocodes.

Algorithm 3.21: TAS1 inputs
2 a = memory address
3 outputs
4 v: flag indicating if the test was succesful
5
6 v = mem[a]
7 if (v == 0){v = 1; return true}
8 return false

Algorithm 3.22: CAS1 inputs
2 a: memory address
3 old: old value
4 new: new value
5
6 oldval = mem[a]
7 if (old == oldval) mem[a] = new
8 return oldval

3 Concurrency 49

As we have already discussed, TAS and CAS allow to implement a
spinlock. In general CAS is strictly more powerful than TAS: every atomic
operation can be efficiently simulated with CAS, but not with TAS, as we
will see in the next chapter when we will discuss Consensus.

Example 3.6.1 (Non-Blocking Counter) The following code snippet
implements a correct lock-free counter. In this example we have the
ABA problem (in a nutshell, although it may seem that if CAS succeeds
nobody has modified the value of the variable, this may not be true).

Algorithm 3.23: Non-Blocking Counter1 public class Counter{
2 private AtomicInteger value;
3 public int inc () {
4 int v = value.get () ; ;
5 do{
6 v = value.get () ;
7 }while(!CAS(value, v, v+1)) ;
8 return v + 1;
9 }
10 }

Algorithm 3.24: Lock-Free Stack
Example 3.6.2 (Lock-Free Stack)

1 public Class ConcurrentStack{
2 AtomicReference<Node> top = new AtomicReference<Node>();
3 public Long pop(){
4 Node head, next;
5 do{
6 head top.get() ;
7 if (head == null) return null ;
8 next = head.next;
9 }while(!top.compareAndSet(head, next));
10 return head.item;
11 }
12 public void push(Long item){
13 Node newi = new Node(item);
14 Node head;
15 do{
16 head = top.get() ;
17 newi.next = head;
18 }while(!top.compareAndSet(head, newi));
19 }
20 }

The advantage of using lock-free data structure is that they are deadlock-
free by design. However, if we compare the performance of the previous
example with a locked version, we would see that our lock-free pro-
grams perform poorly. Keep in mind that a lock-free algorithm does not
automatically provide better performance than its blocking equivalent.
Atomic operations are expensive (they require specific hardware support)
and contention is still a problem. In fact, when there is high contention,
the expensive atomic operations are retried several times, leading to
performance degradation. In general we have that optimistic concurrency

3 Concurrency 50

control could be useful whenever there is low data contention, thus we
assume that although there will be conflicts, they will be rare. We will
look for indication if two threads actually tried to update the shared
resource at the same time. If this is the case, then one of the threads’
operation will be discarded and retried i.e. performing an extra atomic
operation. A solution that works very well in practice to alleviate this
problem is introducing an exponential backoff mechanism.

Now we go back to our lock free stack implementation in order to
introduce an issue that can arise in this context. Without exponential
backoff, our implementation is slow. Instead of introducing a backoff, we
exploit the observation that we create a new node for every single push
operation. As an optimization, we implement a node pool which allows
for reuse of the node objects:

Algorithm 3.25: Get Node from the pool
with a given item

1 public Node get(Long item){
2 do{
3 head = top.get() ;
4 if (head == null) return new Node(item);
5 next = head.next;
6 }while(!top.compareAndSet(head, next);
7 head.item = item;
8 return head;
9 }

Algorithm 3.26: Put Node back the pool1 public void put(Node n){
2 Node head;
3 do{
4 head = top.get() ;
5 n.next = head;
6 }while(!top.compareAndSet(head, n))
7 }

By using those two methods we can implement our lock-free stack as
before, but without creating too many Node objects (which is not a
light operation, as you will see in the Systems Programming and Computer
Architecture course next semester). In facts, when we adjust the stack
implementation to use such a NodePool, we do indeed see a massive
improvement in execution time. However, we see that the program
exhibits erroneous behavior for some runs. This leads to a very common
problem in lock-free concurrent programming, the ABA Problem.

Definition 3.6.1 (ABA Problem) The ABA problem occurs when one activ-
ity fails to recognize that a single memory location was modified temporarily
by another activity and therefore erroneously assumes that the overall state
has not been changed.

In the case of the lock-free stackwith node reuse, this means the following
scenario would exhibit an ABA-problem: We try to pop and observe that
head == a and head.next == b. We then try to compare-and-set head to
b. Suppose however, that another thread removes both a and b, pushes
some other node c and then pushes a. We would then observe head ==
a as expected and set head == b, a node which is possibly not even in

3 Concurrency 51

the stack at the time. In order to be clear we introduce another possible
scenario in the following figure.

Figure 3.2: An example of ABA Problem

There are several possible alternatives to alleviate the ABA problem:

I DCAS: We can check whether both head and head.next are as
expected, but doesn’t exist on most platforms.

I Garbage Collection: Would eliminate the need for a NodePool, but
is very slow and doesn’t always exist either.

I Pointer Tagging: By incrementing the address bits made available
by alignment, we can decrease the odds of the ABA problem
occuring by a lot. Nonetheless, this doesn’t actually alleviate the
problem, only delay it.

I Hazard Pointers: We can associate an AtomicReferenceArray<Node>
with the data structure where we temporarily store references
which we’ve read and wish to write to in the future. Whenever
we return a Node to the NodePool, we check whether its reference
is stored in the hazarduous array. While this solution does work,
the final product of a NodePool doesn’t really improve performance
when compared to regular memory allocation with a garbage
collector.

As a conclusion to this section we do the following observation: lock-free
programming alleviates some problems of parallel programming with
locks. However it introduces other kind of problems such as the ABA
problem, it puts burden on the programmer and it may not improve
performance. In the next section we see an alternative, which is still in
the category of optimal concurrency control, but is much easier for the
programmer. This kind of solution is likely to become more and more
important in the following years.

3.7 Transactional Memory

We saw that programming with locks is difficult and exhibits problems
such as deadlocks, convoying (when a thread holding a resource ' is
de-scheduled while other threads queue up waiting for ') and prior-
ity inversion (when a lower priority thread holds a resource ' that a
high priority thread is waiting on). Association of locks and data is
established by convention. The best one can do is reasonably document
the code. Recall for example the bank account problem: if one wants
to implement it without introducing deadlocks, he has to write several
lines of synchronization for just a couple of lines describing the actual
operation. Another drawback of locks is that they are not composable,
i. e. combining = thread-safe operations is not straighforward. Lock-free

3 Concurrency 52

programming can be even worse. The goal would be to find a tool to
remove the burden of synchronization from the programmer and pace
it in the system (hardware and software). Transactional memory tries to
do this by introducing atomic blocks. With transactional memory the
programmer explicitly defines atomic code sections, but he’s mainly
concerned with what operations should be atomic rather than how this is
actually achieved. Transactional memory is simpler and less error prone
than locking, it allows a declarative semantics (what instead of how) and
it’s optimistic by design (i. e. similarly to optimistical concurrency control
with atomic operations, it does not assumes the worst and it does not re-
quire mutual exclusion). With this model changes made by a transaction
are made visibly atomically. Other threads preserve either the initial or
the final state, but not any intermediate states. Locks enforce atomicity
via mutual exclusion, transactions do not require mutual exclusion.

Definition 3.7.1 (Transactional Memory) Transactional Memory is a
programming model whereby loads and stores on a particular thread can be
grouped into transactions. The read set and write set of a transaction are the
set of addresses read from and written to respectively during the transaction. A
data conflict occurs in a transaction if another processor reads or writes a value
from the transaction’s write set, or writes to an address in the transaction’s
read set. Data conflicts cause the transaction to abort, and all instructions
executed since the start of the transaction (and all changes to the write set) to
be discarded.

Transactions run in isolation: while a transaction is running, effects from
other transactions are not observed. A good analogy is the one of a
snapshot: transactional memory works as if transaction takes a snapshot
of the global state when it begins and then operates on that snapshot.

In database transactions that are four properties that are important, and
usually are recalled with the word ACID. The properties are atomicity,
consistency (i. e. the database remains in a consistent state), isolation (i. e.
no mutual corruption of data) and durability (i. e. transaction effects are
stored in disk and hence will survive power loss). Transactional memory
satisfies three of this properties: atomicity, consistency and isolation.

Transactional memory works as follows: it tries to do the transaction
without enforcing mutual exclusion but, if there is a conflict, the transac-
tion aborts and has to restart again. If there is no conflict, the transaction
commits. A system to enforce this behaviour can be either implemented
in software (which can be fast, but often cannot handle big transac-
tions) or in hardware (which offers great flexibility, but achieving good
performance might be challenging).

Transactional Memory is far to be part of parallel programming routine,
but is likely to get more and more important in the future. Today we have
ScalaSTM, a Java API through which we can access the methods provided
by the Scala STM library. ScalaSTM is a so-called reference-based STM,
which means that mutable state, i.e. state which can only be modified
inside a transaction, is put into special variables.

private final Ref.View<Integer> count = STM.newRef(0);

Arrays can be declared as follows:

3 Concurrency 53

private TArray.View<E> items = STM.newTArray(capacity);

Everything else is immutable, which means any other variable accessed
inside an atomic block must be declared final.

We can create an atomic block as follows:

STM.atomic(new Runnable(){...}); or STM.atomic(new Callable<T>(){...});

Note that the passed Runnable or Callable object must implement the
public void run() or the public T call()method, respectively.

Example 3.7.1 We can now try to implement the enq()method of the
bounded queue using ScalaSTM. First, we need to distinguish between
mutable state and immutable state.We see that wemodify the variables
count, tail and items. As these variables should indeed only be accessed
from within a transaction, they are part of the mutable state. The
method also accepts a parameter x. As we only read object and do not
actually try to modify, we’ll include it in the immutable state. All in all,
our class will look something like this (omitting the other methods for
brevity):

1 public class CircularBufferSTM<T>{
2 private final Ref.View<Integer> count = STM.newRef(0);
3 private final Ref.View<Integer> tail = STM.newRef(0);
4 private TArray.View<T> items;
5 public CircularBufferSTM(int capacity){
6 items = STM.newTArray(capacity);
7 }
8 public void enq(final T x){
9 STM.atomic(new Runnable(){
10 if (count.get() == items.length())STM.retry();
11 items.update(tail .get () , x) ;
12 tail . set ((tail .get ()+1) % items.length());
13 STM.increment(count, 1);
14 }) ;
15 }
16 }

Other topics 4
4.1 Linearizability and Sequential Consistency

In the previous chapter we have seen many ways to implement blocking
and non-blocking concurrent data structures. We have seen that those
implementations are correct. Interestingly enough, we did all this without
properly defining what a correct parallel execution is. This is the aim
of this section, defining different notions of correctness, some more
strict than others, so that we may argue and prove things about our
implementations.

Definition 4.1.1 (Object) An object is a variable or a data structure storing
information. This is a general term for any entity that can be modified, like a
queue, stack, memory slot, ...

An operation 5 access or manipulates an object. The operation 5 starts at
clock time 51 and ends at clock time 54 . An operation can be as simple as
extracting an element from a data structure, but an operation may also
be more complex, like fetching an element, modifying it and storing it
again. We introduce the notation 5 < 6, which means that 54 < 61 .

Definition 4.1.2 ((Sequential) Execution) An execution � is a set of
operations on one or multiple objects that are executed by a set of nodes.

An execution restricted to a single node is a sequential execution. All operations
are executed sequentially, which means that no two operations 5 and 6 are
concurrent, i. e. we have 5 < 6 or 6 < 5 .

Definition 4.1.3 (Semantic Equivalence) Two executions are semantically
equivalent if they contain exactly the same operations. Moreover, each pair of
corresponding operations has the same effect in both executions. For example,
when dealing with a stack object, corresponding pop operations in two different
semantically equivalent executions must yield the same element of the stack.

Definition 4.1.4 (Linearizability) An execution � is called linearizable if
there is a sequence of operations (such that:

I S is correct and semantically equivalent to �
I Whenever 5 < 6 for two operations 5 , 6 in �, then also 5 < 6 in (

The idea behind linearizability is that the concurrent history is equivalent
to some sequential history. The rule is that if one method call precedes
another, then the earlier call must have taken effect before the later call.
By contrast, if two method calls overlap, then their order is ambiguous,
and we are free to order them in any convenient way.

A linearization point of operation f is some 5• ∈
[
51 , 54

]
.

4 Other topics 55

Theorem 4.1.1 An execution � is linearizable iff there exist linearization
points such that the sequential execution (that results in ordering the
operations according to those linearization points is semantically equivalent
to �.

Proof. Let 5 and 6 be two operations in �with 54 < 61 . Then by definition
of linearization points we also have 5• < 6• and therefore 5 < 6 in (.

Definition 4.1.5 (Sequential Consistency) An execution � is called se-
quentially consistent, if there is a sequence of operations (such that:

I (is correct and semantically equivalent to �
I Whenever 5 < 6 for two operations 5 , 6 on the same node in �, then

also 5 < 6 in (.

Example 4.1.1 We are given the following history:

A: s.push(2)

B: s.push(1)

A: void

B: void

A: s.pop()

B: s.pop()

A: 2

B: 1

We can see that the first two method calls and the last two method
calls overlap.
An easy visualization of histories is through the use of time lines. In
this case, it could look like this:

A s.push(1): *---------*
B s.push(2): *---------*
B s.pop()->1: *---------------*
A s.pop()->2: *-------------*
This history is both linearizable and sequentially consistent.

Theorem 4.1.2 Linearizability implies sequential consistency (but the oppo-
site direction does not hold).

Proof. Since linearizability (order of operations on any node must be
respected) is stricter than sequential consistency (only order operations
on the same node must be respected), the theorem follows immediately.
As a counterexample to the other direction consider the following history:

A: s.pop(1)

A: void

B: s.push(1)

B: void

4 Other topics 56

which is sequential consistent but not linearizable.

A system or implementation is called linearizable if it ensures that every
possible execution is linearizable.

Example 4.1.2 You submit a comment on your favorite social media
platform using your mobile phone. The comment is immediately
visible on the phone, but not on your laptop. Is this level of consistency
acceptable? In this context a linearizable implementation would have
to make sure that the comment is immediately visible on any device,
as the read operation starts after the write operation finishes. If the
system is only sequentially consistent, the comment does not need to
be immediately visible on every device.

Definition 4.1.6 (Restricted Execution) Let � be an execution involving
operations on multiple objects. For some object > we let the restricted execution
� |> be the execution � filtered to only contain operations involving object >.

Definition 4.1.7 (Composability) A consistency model is called composable
if the following holds: if for every object > the restricted execution � |> is
consistent, then also � is consistent. Composability enables to implement,
verify and execute multiple concurrent objects independently.

Theorem 4.1.3 Sequential consistency is not composable.

Proof. Consider the following history as a counterexample to the com-
posability of sequential consistency:

A: read(x) = 1

A: void

A: write(y)=1

A: void

B: read(y)=1

B: void

B: write(x)=1

B: void

Theorem 4.1.4 Linearizability is composable.

Proof. Let � be an execution composed of multiple resticred executions
� |G. For any object G there is a sequential execution(|G that is semantically
consistent to � |G and in which the operations are ordered according
to clock linearization points. Let (be the sequential execution ordered
according to all linearization points of all executions � |G. (is semantically
equivalent to � as (|G is semantically equivalent to � |G for all objects
G and two object disjoint executions cannot interfere. Furthermore, if
54 < 61 in �, then also 5• < 6• in � and therefore 5 < 6 in (.

4 Other topics 57

Definition 4.1.8 (Quiescent Consistency) An execution � is called quies-
cent consistent, if there exist a sequence of operations (such that:

I (is correct and semantically equivalent to �
I Let C be some quiescent point, i. e. for all operations 5 we have 54 < C or

51 > C. Then for every C and every pair of operations 6, ℎ with 64 < C

and ℎ1 > C we also have 6 < ℎ in (

Theorem 4.1.5 Linearizability implies quiescent consistency.

Proof. Let � be the original execution and (be the semantically equiva-
lent sequential execution. Let C be a quiescent point and consider two
operations 6, ℎ with 64 < C < ℎ1 . Then we have 6 < ℎ in (. This is also
guaranteed by linearizability since 64 < C < ℎB implies 6 < ℎ.

Theorem 4.1.6 Sequential consistency and quiescent consistency do not
imply one another.

Proof. There are executions that are sequentially consistent but not
quiescently consistent. An object initially has value 2. We apply two
operations to this object: inc (increment the object by 1) and double
(multiply the object by 2). Assume that 8=2 < 3>D1;4, but inc and double
are executed on different nodes. Then a result of 5 (first double, then
inc) is sequentially consistent but not quiescently consistent. There are
executions that are quiescently consistent but not sequentially consistent.
An object initially has value 2. Assume to have three operations on two
nodes D and E. Node D calls first inc then double, node E calls inc once
with 8=2E

1
< 8=2D4 < 3>D1;4D

1
< 8=2E4 . Since there is no quiescent point,

quiescent consistency is okay with a sequential execution that doubles
first, resulting in ((2 · 2) + 1) + 1 = 6. The sequential execution demands
that 8=2D < 3>D1;4D , hence the result should be strictly larger than 6
(either 7 or 8).

4.2 Volatile Fields

In this section, we give a brief overview of volatile fields. We introduce
them because they are instructive and they give some insights about the
Java Memory Model. However, we strongly recommend you to avoid
them in practice: they are really for experts!

Consider the following scenario: there are two variables, X and Y, which
have value zero. Then two threads, thread � and thread �, run con-
currently. Thread � executes the following instructions: - = 1, � = ..
Thread � executes the following: . = 1, � = -. The question is: how
is it possible that one could end in a situation where both I and J have value
zero, although no possible interleaving of the instructions leads to such a result?
There are two possible answers to this (apparent) paradox:

I In an environment with multiple CPUs, each CPU has its own
separate cache. In this scenario is possible that, if Thread � runs
on CPU 1 and Thread � runs on CPU 2, then � writes the value

4 Other topics 58

of - in the cache (and hence � will not see it) and reads the value
of . from its cache (and hence will not see the update from �).
Similarly, � writes . and reads - from its local cache. By knowing
what happens underneath, one can explain the apparently strange
behaviour of the program.

Figure 4.1: Program Behaviour

I Another explanation is given by the Out-Of-Order-Execution. Even
in a single core environment, the compiler, the CPU or the hardware
could reorder instructions. This is done for the sake of efficiency
and the pact is that the sequential programmer does not see any
difference from the behavior of his program. However, when there
are multiple threads, such reorderings could lead to situations
where bad interleavings can actually happen.

We can make a link with the previous section by stating that the Java
Memory Model is very relaxed, in facts it does not either guarantees
sequential consistency, even instructions reorders are possible! This
choice is done to accommodate compiler optimizations. Here volatile
fields come into play. In the previous chapter we stated that volatile
accesses do not count as data races. But what does it actually mean?
This means that the compiler does not touch (and does not reorder)
volatile accesses and it forces reads and writes directly to memory (this
is actually not completely true, in facts the hardware could still use some
tricks to use cached value in order to save time, but now there is the
guarantees that caches are consistent). Hence, by declaring - and .
volatile, the apparently strange behaviour of our previous example will
not happen anymore. Volatile fields are weaker than locking: they give
less guarantees, but they introduce less overhead. Let’s see an additional
example of the consequences of declaring a variable volatile.

Example 4.2.1 The following code

1 volatile int x;
2 void foo() {
3 x++;
4 }
5

is equivalent to

1 int x;
2 int tmp;

4 Other topics 59

3 void foo() {
4 synchronized(x){
5 tmp = x;
6 }
7 tmp = tmp + 1;
8 synchronized(x){
9 x = tmp;
10 }
11 }

If this increment algorithm is executed by a single writer thread and
multiple readers, than using volatile is enough. However, if there are
multiple writers one needs to go back to locks or atomic operations.

We conclude this section by recalling the two common use cases of
volatile variables: setting a flag and doing operations with a single writer
(and multiple readers).

4.3 Consensus

The goal of this section is to identify a set of primitive synchronization
operations powerful enough to solve synchronization problems likely to
arise in practice. To this end, we need some way to evaluate the power
of various synchronization primitives: what synchronization problems
they can solve, and how efficiently they can solve them. The basic idea is
simple: each class in the hierarchy has an associated consensus number,
which is the maximum number of threads for which objects of the class
can solve an elementary synchronization problem called consensus. The
consensus problem is simple. A certain number of threads call a decide
method which outputs a value. The requirements of this method in order
to be correct are:

I Wait-Free: consensus returns in finite time for each thread
I Consistent: all threads decide on the same value
I Valid: the common decision value is some thread’s input

The linearizability of consensus must be such that the first thread’s
decision is adopted for all threads.

Definition 4.3.1 A class � solves =−thread consensus if there exist a
consensus protocol using any number of objects of class � and any number of
atomic registers.

Definition 4.3.2 The consensus number of a class � is the largest = for
which that class solves =−thread consensus. IF no largest = exists, we say the
consensus number of the class in infinite.

A good place to start is to think about the simplest interesting case: binary
consensus (i. e. inputs are either zero or one) for two threads � and �.
Each thread makes moves until it decides on a value. Here, a move is a
method call to a shared object. A protocol state consists of the states of the
threads and the shared objects. An initial state is a protocol state before
any thread has moved, and a final state is a protocol state after all threads

4 Other topics 60

have finished. The decision value of any final state is the value decided
by all threads in that state. A wait-free protocol’s set of possible states
forms a tree, where each node represents a possible protocol state, and
each edge represents a possible move by some thread. An edge for �
from node B to node B′ means that if � moves in protocol state B, then
the new protocol state is B′. Because the protocol is wait-free, the tree
must be finite. Leaf nodes represent final protocol states, and are labeled
with their decision values, either 0 or 1. A protocol state is bivalent if
the decision value is not yet fixed: there is some execution starting from
that state in which the threads decide 0, and one in which they decide 1.
By contrast, the protocol state is univalent if the outcome is fixed: every
execution starting from that state decides the same value. A bivalent
state is a node whose descendants in the tree include both leaves labeled
with 0 and leaves labeled with 1, while a univalent state is a node whose
descendants include only leaves labeled with a single decision value.

Figure 4.2: An execution tree for two
threads � and �. The dark shaded nodes
denote bivalent states, and the lighter ones
the univalent states.

A protocol state is critical if it is bivalent and if any thread moves, the
protocol state becomes univalent.

Atomic Registers

We begin by asking ourselves, whether we can solve consensus using
atomic registers. The answer is no.

Theorem 4.3.1 Atomic registers have consensus number one.

Proof. Suppose there exists a binary consensus protocol for two threads
� and �. Since every wait-free consensus protocol has a critical state (this
is derived from the fact that there always exist a bivalent initial state),
we can run the protocol until it reaches a critical state B. Suppose �’s
next move carries the protocol to a zero-valent state, and �’s next move
carries the protocol to a one-valent state. What methods could � and �
be about to call? We now consider an exhaustive list of the possibilities:
one of them reads from a register, they both write to separate registers,
or they both write to the same register.

Suppose � is about to read a given register (� may be about to either
read or write the same register or a different register). Consider two
possible execution scenarios. In the first scenario, � moves first, driving
the protocol to a one-valent state B′, and then � runs solo and eventually
decides 1. In the second execution scenario, Amoves first, then � executes

4 Other topics 61

one operation, driving the protocol to a zero-valent state B. � then runs
solo starting in B′′ and eventually decides zero. The problem is that the
states B′ and B′′ are indistinguishable to � (the read � performed could
only change its thread-local state which is not visible to B), which means
that B must decide the same value in both scenarios, a contradiction.

Suppose, instead of this scenario, both threads are about to write to
different registers. � is about to write to A0 and � to A1. Let us consider
two possible execution scenarios. In the first, � writes to A0 and then
� writes to A1, so the resulting protocol state is zero-valent because �
went first. In the second, � writes to A1 and then � writes to A0, so the
resulting protocol state is one-valent because � went first. The problem
is that both scenarios lead to indistinguishable protocol states. Neither �
nor � can tell which move was first. The resulting state is therefore both
zero-valent and one-valent, a contradiction.

Finally, suppose both threads write to the same register A. Again, consider
two possible execution scenarios. In one scenario � writes first, the
resulting protocol state B′ is zero-valent, � then runs solo and decides
zero. In another scenario, � writes first, the resulting protocol state B′′
is one-valent, � then runs solo and decides one. The problem is that �
cannot tell the difference between B′ and B′′ (because in both B′ and B′′ it
overwrote the register A and obliterated any trace of �’s write) so � must
decide the same value starting from either state, a contradiction.

Corollary 4.3.2 It is impossible to construct a wait-free implementation of
any object with consensus number greater than one using atomic registers.

The aftermentioned corollary is perhaps one of the most striking im-
possibility results in Computer Science. It explains why, if we want to
implement lock-free concurrent data structures on multiprocessors, out
hardware must provide primitive synchronization operations other than
loads and stores.

Theorem 4.3.3 Compare-And-Set has infinite consensus number.

Proof. As shown in the following code snippet, threads share an Atom-
icInteger object, initialized to a constant FIRST, distinct from any thread
index. Each thread calls compareAndSet() with FIRST as the expected
value, and its own index as the new value. If thread �’s call returns true,
then that method call was first in linearization order, so � decides its
own value. Otherwise � reads the current AtomicInteger value, and takes
that thread’s input from the proposed[] array.

1 class CASConsensus{
2 private final int FIRST = −1;
3 private AtomicInteger r = new AtomicInteger(FIRST);
4 private AtomicInteger proposed;
5
6 public Object decide(Object value){
7 int i = ThreadID.get();
8 proposed.set(i ,value);
9 if (r .compareAndSet(FIRST, i)) return proposed.get(i);

4 Other topics 62

10 else return proposed.get(r.get ()) ;
11 }
12 }

Theorem 4.3.4 The two-dequeuer FIFO queue class has consensus number
at least two.

Proof. Here, the queue stores integers. The queue is initialized by enqueu-
ing the value WIN followed by the value LOSE. As in all the consensus
protocol considered here, decide() first calls propose(v), which stores E in
proposed[], a shared array of proposed input values. It then proceeds to
dequeue the next item from the queue. If that item is the valueWIN, then
the calling thread was first, and it decides on its own value. If that item
is the value LOSE, then the other thread was first, so the calling thread
returns the other thread’s input, as declared in the proposed[] array. The
protocol is wait-free, since it contains no loops. If each thread returns
its own input, then they must both have dequeued WIN, violating the
FIFO queue specification. If each returns the other’s input, then they
must both have dequeued LOSE, also violating the queue specification.
The validity condition follows from the observation that the thread that
dequeued WIN stored its input in the proposed[] array before any value
was dequeued. The next code snippet shows a two thread consensus
protocol using a single FIFO queue.

1 public class QueueConsensus<T> extends ConsensusProtocol<T>{
2 private static final int WIN = 0;
3 private static final int LOSE = 1;
4 Queue queue;
5 public QueueConsensus(){
6 queue = new Queue();
7 queue.enqueue(WIN);
8 queue.enqueue(LOSE);
9 }
10 public T decide(T value){
11 propose(value);
12 int status = queue.deq();
13 int i = ThreadID.get();
14 if (status == WIN) return proposed[i];
15 else return proposed[i−1];
16 }
17 }

Theorem 4.3.5 RMW operations have consensus number two.

Proof. We do not show the theorem in its totality. We just consider the
case of TAS and we consider a two thread consensus protocol with it.

4 Other topics 63

One would also have to show that a three thread consensus with TAS is
impossible to achieve.

1 public class TASCOnsensusProtocol<T>{
2 static int X = 0;
3 protected[]T proposed = (T[])new Object[2];
4 void propose(T value){
5 proposed[ThreadID.get()] = value;
6 }
7 public T decide(T value){
8 propose(value);
9 boolean val = TAS(X);
10 if (val) return value;
11 else return proposed[1−ThreadID.get()];
12 }
13 }

We see that the call to TAS(X)will only return true once, namely the first
time it’s called. Otherwise,it’ll always return false. It’s therefore easy to
see that the returned result is both consistent and valid. As the protocol
doesn’t contain any loops or other dependencies, it’s wait-free. Therefore,
we have provided a correct 2-thread consensus protocol and shown that
test-and-set implements 2-thread consensus. Note that we can’t extend
this implementation to n-treads, as a ”loser” thread has no way of telling
which entry of the proposed array it should use.

Given the previous theorems we have that it is impossible to implement
wait-free FIFO queues, wait-free RMW operations and CAS with atomic
registers. This holds because they all have a consensus number larger
then one. This section also explains why in the section about atomic
operations we stated that CAS is strictly more powerful than TAS: CAS
has consensus number infinity, while TAS only two. Many people in the
past have attempted to implement RMWoperations with atomic registers,
but this would be similar to trying to square the circle: a loss of time.

4.4 Parallel Sorting

Sorting is one of the most important computational tasks. For example
Donald Knuth, in its famous The Art of Computer Programming, stated:
Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting. In the previous semester you have seen
different algorithms of sorting and some of them you implemented also
in this course by exploiting the framework for the divide and conquer
paradigm. We know that a sorting algorithm, with the exception of some
specialized cases, cannot do better than O(= log =) in the worst case.
The obvious next step is to try to break this lower bound by using the
multiprocessors available to us, i. e. by parallelizing sorting algorithms.
Now we present a new class of sorting algorithms: sorting networks. A
sorting network is a network of comparators. A comparator is a computing
element with two input wires and two output wires, called the top and
bottomwires. It receives two numbers on its input wires, and forwards the

4 Other topics 64

larger to its top wire and the smaller two its bottomwire. A comparator is
synchronous, i. e. it outputs values only when both inputs have arrived.

A comparison network is an acyclic network of comparators. An input
value is placed on each of its F input lines. These values pass through
each layer of comparators synchronously, finally leaving together on the
network output wires. A comparison network with input values G8 and
output values H8 (where all elements of the vectors G and H are either 0
or 1) is a valid sorting network if its output values are the input values
sorted in descending order. The following classic theorem simplifies the
process of proving (or disproving) that a given network sorts correctly.

Theorem4.4.1 (0-1 Principle) If a sorting network sorts every input sequence
of 0s and 1s, then it sorts any sequence of input values.

By playing with sorting networks you can come up with some sorting
algorithms. For example you can try to "simulate" Bubble Sort and Insertion
Sort and you will realize that, in the context of sorting networks, they are
equivalent. Or you could come upwith a more efficient (but still intuitive)
algorithm called odd-even sorting. In the remainder of the section we
discuss Bitonic Sort, a parallel algorithm that, provided a sufficiently large
amount of processors, breaks the lower bound on sorting for comparison
based algorithms. The sequential time complexity of Bitonic Sort is
O(= log2 =), but gets a parallel complexity of O(log2 =) with an infinite
amount of processors.

Definition 4.4.1 (Bitonic Sequence) A bitonic sequence is a sequence of
numbers that first monotonically increases, and then monotonically decreases,
or vice versa. For example the sequence < 1, 4, 6, 8, 3, 2 > is bitonic, the
sequence < 9, 6, 2, 3, 5, 4 > is not. Since we restrict ourselves to sequences of
zeros and ones, bitonic sequences have the form 08190: or 18091: .

Definition 4.4.2 (Half Cleaner) An half cleaner is a comparison network
that takes as input two bitonic sequences and returns a sequence such that:

I the upper and lower half are bitonic
I one of the halves is bitonic clean
I every number in upper half is lower equal than every number in the

lower half

Hence, given a bitonic sequence, we can sort it by using half cleaners
recursively.

Definition 4.4.3 (Bitonic Sequence Sorter) With the help of half cleaners
we can construct a bitonic sequence sorter, which sorts a bitonic sequence.
The algorithm works as follows:

1. A bitonic sequence sorter consists of a half cleaner of width =, and then
two bitonic sequence sorters of width =/2 each.

2. A bitonic sequence sorter of width 1 is empty.

Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks. A merging network is
simply a bitonic sequence sorter, where we replace the (first) half-cleaner

4 Other topics 65

by a merger. How do we sort = values when we are able to merge
two sorted sequences of size =/2? Piece of cake, just apply the merger
recursively, as shown in the next figure.

Figure 4.3: Bitonic Sort

The number of steps performed by the algorithm is:

log =∑
8=1

log(28) ∈ O(log2 =)

where log = is the number of mergers and log(28) is the number of steps
performed by every merger.

4.5 Skip List

In this section we present a new data structure which is useful to handle
a collection of elements (without duplicates) and provides an interface
to add, search and remove elements. This data structure performs well
when there are several searches, fewer addition andmanymore deletions.
The advantage of this data structure (compared to other efficient data
structures such as AVL trees) is that is easy to parallelize. The basic idea
is to have a sorted multi-level list and the node height is probabilistic.
Let’s take a closer look to the sequential implementation.

Can we search in a sorted linked list in better than O(=) time? The worst
case search time for a sorted linked list is O(=) as we can only linearly
traverse the list and cannot skip nodes while searching. For a Balanced
Binary Search Tree, we skip almost half of the nodes after one comparison
with root. For a sorted array, we have random access and we can apply
Binary Search on arrays. Can we augment sorted linked lists to make
the search faster? The answer is Skip List. The idea is simple, we create
multiple layers so thatwe can skip some nodes. See the following example
list with 16 nodes and two layers. The upper layer works as an “express
lane” which connects only main outer stations, and the lower layer works
as a “normal lane” which connects every station. Suppose we want to
search for 50, we start from first node of “express lane” and keep moving
on “express lane” till we find a node whose next is greater than 50. Once
we find such a node (30 is the node in following example) on “express
lane”, we move to “normal lane” using pointer from this node, and
linearly search for 50 on “normal lane”. In following example, we start
from 30 on “normal lane” and with linear search, we find 50.

4 Other topics 66

Figure 4.4: Example of Skip List with two
levels

What is the time complexity with two layers? The worst case time
complexity is number of nodes on “express lane” plus number of nodes
in a segment (A segment is number of “normal lane” nodes between two
“express lane” nodes) of “normal lane”. So if we have n nodes on “normal
lane”,

√
= nodes on “express lane” and we equally divide the “normal

lane”, then there will be
√
= nodes in every segment of “normal lane” .√

= is actually optimal division with two layers. With this arrangement,
the number of nodes traversed for a search will be O(

√
=). Therefore, with

O(
√
=) extra space, we are able to reduce the time complexity to O(

√
=).

The time complexity of skip lists can be reduced further by adding more
layers. In fact, the time complexity of search, insert and delete can become
O(log =) in average case with O(=) extra space.

Each element in the list is represented by a node, the level of the node is
chosen randomly while insertion in the list. Level does not depend on
the number of elements in the node. The level for node is decided by the
following algorithm:

Algorithm 4.6: Choose level1 level = 1;
2 B random() that returns a random value in [0...1)
3 while random() < p and level < MaxLevel do
4 level := level + 1
5 return level

MaxLevel is the upper bound on number of levels in the skip list. It can be
determined as – !(#) = log?/2(#). Above algorithm assure that random
level will never be greater than MaxLevel. Here ? is the fraction of the
nodes with level 8 pointers also having level 8 + 1 pointers and # is the
number of nodes in the list.

Each node carries a key and a forward array carrying pointers to nodes
of a different level. A level 8 node carries i forward pointers indexed
through 0 to 8.

Insertion

We will start from highest level in the list and compare key of next node
of the current node with the key to be inserted. Basic idea is if:

1. Key of next node is less than key to be inserted then we keep on
moving forward on the same level

2. Key of next node is greater than the key to be inserted then we
store the pointer to current node 8 at update[i] and move one level
down and continue our search

at the level 0, we will definitely find a position to insert given key.

4 Other topics 67

Searching

Searching an element is very similar to approach for searching a spot for
inserting an element in Skip list. The basic idea is if:

I Key of next node is less than search key then we keep on moving
forward on the same level

I Key of next node is greater than the key to be inserted then we
store the pointer to current node 8 at update[i] and move one level
down and continue our search

At the lowest level (0), if the element next to the rightmost element
(update[0]) has key equal to the search key, then we have found key
otherwise failure.

Deletion

Deletion of an element : is preceded by locating element in the Skip list
using above mentioned search algorithm. Once the element is located,
rearrangement of pointers is done to remove element form list just like we
do in singly linked list. We start from lowest level and do rearrangement
until element next to update[i] is not :. After deletion of element there
could be levels with no elements, so we will remove these levels as well
by decrementing the level of Skip list.

4.6 Message Passing

In this course we have discussed several ways to ensure mutual exclusion.
We talked about locks, atomic operations and transactional memory.
Now we take a step back and we observe that all this techniques share a
common assumptions: different proccessor (or threads) communicate by
accessing the same memory. In order to ensure correctness (i. e. avoiding
data races, bad interleavings and inconvenient program executions) we
studied several ways to ensure that no two agents have access to a shared
mutable resource at the same time. We particularly paid attention to
write-write and read-write conflicts.

How can we exploit parallelism without the (problematic) shared mem-
ory assumption? There are two main alternatives. The first option is
functional programming, a particular programming paradigm that works
with immutable states and hence does not require synchronization. You
will gain experience with this idea in the course Functional Programming
and Formal Methods in the fourth semester. The second option is message
passing, which we study in this section. In message passing the state is
mutable, but is not shared among processors (or threads). Here each
processor has its ownmemory, and hence it does not need to synchronize
accesses. However, in order to make different processors cooperate, an
alternative solution to shared memory is necessary. Message passing
uses messages, which are exchanged by processors via an interconnect
network.

4 Other topics 68

Message Passing Interface

In order to illustrate howmessage passing works, we present theMessage
Passing Interface (MPI). In order to understand MPI, we first need some
preliminary concepts.

The Actor Model is a model for concurrent computation. Actors are
computational agents that perform local computations and react to
received messages.

Example 4.6.1 A distributor is a type of actor which forwards received
messages to a set of actors in a round-robin fashion. There are two
questions that we need to answer to be able to model an actor. What
local state should be kept by the actor and what should the actor do
upon receiving a message? The first question can be answered quickly.
We know that we have a set of actors. In order to guarantee that the
messages are distributed in a round-robin fashion, we store the actors
in an array and we keep an index which indicates the entry in the
array which contains the next actor to send a message to. Now that we
know what internal state we are going to keep, defining the behavior
of the actor upon receiving a message seems obvious. The message
can immediately be forwarded to the actor stored in the array entry
indicated by the stored index. Then, we increment the index modular
the array length. We also need to consider adding control commands
which could, for example, allow us to add or remove actors from the
set of stored actors.

There are different ways to communicate. On the one hand there is
synchronous vs asynchronous communication: synchronous communication
means "live" communication (e.g. a phone call), asynchronous communi-
cation indicates "delayed" communication (e.g.mail communication). On
the other hand there is blocking vs non-blocking communication: blocking
communication means "not doing anything until the message is read",
while non-blocking communicationmeans "if the message is not received,
I do something else and I retry later". Those concepts are orthogonal, i. e.
they don’t influence each other. Concretely, we have:

I Synchronous + blocking: try to call somebody until he answers.
I Synchronous + non-blocking: try to call, if the other person does

not pick up I do something else.
I Asynchronous + blocking: wait until your crush texts you back.
I Asynchronous + non-blocking: send an E-Mail and continue work-

ing until you get a response.

In the actor model, messages are sent in an asynchronous, non-blocking
fashion, i.e. the sender places the message into the buffer of the receiver
and continues execution. In contrast, when the sender sends synchronous
messages, it blocks until the message has been received. MPI collects
processes into groups, where each group can have multiple colors. A
group paired with its color uniquely identifies a communicator. Initially,
all processes are collected in the same group and communicator MPI_-
COMM_WORLD. Within each communicator, a process is assigned a unique
identifier, called the rank.

4 Other topics 69

Point-to-Point Communication

The methods to send and receive messages are declared as follows:

1 public void Send(
2 Object buf, B Ptr to data to be sent
3 int offset ,
4 int count, B Number of items to be sent
5 Datatype datatype, B Datatype of items
6 int dest, B Destination process id
7 int tag, B Data id tag
8) ;
9 public void Recv(
10 Object buf, B Ptr to buffer to rcv to
11 int offset ,
12 int count, B Number of items to be received
13 Datatype datatype, B Datatype of items
14 int dest, B Source process id
15 int tag, B Data id tag
16) ;

Note that in the case of the Recv method it is not necessary to declare
src or tag, instead one could use MPI_ANY_SOURCE or MPI_ANY_TAG. Both
methods are declared in the COMM class, i.e. can only be used in combina-
tion with a communicator. The two methods declared above are so-called
blocking operations, which means they will not return until the action has
been completed locally. Their non-blocking variants recv and send return
immediately. We can also send synchronous messages, i.e. the operation
blocks until the message has been received, using Send. Note that the
Recv method declared above already is synchronous. To summarize and
complete what we have learned up until now, we can write a simple MPI
program using the following six functions:

I MPI.Init(): initialize the MPI library (first routine called)
I MPI.COMM.Size(): get the size of a communicator COMM
I MPI.COMM.Rank(): get the rank of the calling process in the com-

municator
I MPI.COMM.Send(): Send a message to another process in the com-

municator
I MPI.COMM.Recv(): Receive a message from another process in the

communicator
I MPI.Finalize(): Clean up all MPI state (last routine called)

Example 4.6.2 Given an array of integers, let’s compute the number
of prime factors for each entry. The resulting array should be present
in the process with rank 0 at the end. For simplicity, assume the array
length is divisible by the number of processes.

1 public static void computePrimeFactors(int[] arr){
2 int size = MPI.COMM_WORLD.Size();
3 int rank = MPI.COMM_WORLD.Rank();
4 int partSize = arr . length / size ;

4 Other topics 70

5 int [] res = new int[partSize];
6 for(int i = rank∗partSize; j=0; i<arr.length; i++,j++){
7 if (rank == 0) arr[i] = primeFactors(arr[i]) ;
8 else res[j] = primeFactors(arr[i]) ;
9 }
10 if (rank != 0) MPI.COMM_WORLD.Send(res, 0, partSize, MPI.

INT, 0, 42);
11 else {
12 for(int i = 1; i < size ; i++){
13 MPI.COMM_WORLD.Recv(arr, i∗partSize,partSize,MPI.

INT, i,42);
14 }
15 }
16 }

We see that the behaviour of the programdepends on the rank of the actor.
The actor with rank zero behaves differently than all other actors. Since
a single program (we compile it only once) actually includes multiple
programs (We can argue that rank zero executes something completely
different than the other actors), we say that MPI is Single ProgramMultiple
Data (SPMD).

Group Communication

So far we considered communication between two specific processes.
MPI also supports communications among groups of processes. This is
not really necessary to write a program (the six methods provided above
are sufficient towrite anyMPI program), but it is essential to performance.
Here we give an overview of some methods for group communication:

I Broadcast: used by a processor to send a data to all other processors.
I Scatter: used by a processor to distribute an aggregate of = items

(e.g. an array) to the other ? processors, such that each processor
has =/? elements.

I Gather: used by a processor to recall the results of the computation
from the other processors. A leader processor that initially holds
the array can distribute the elements to the processors which, after
they have performed some computation in parallel, are recalled by
the leader via the gather method.

I Reduce: used to perform an operation such as sum, max, min, prod,
... to an aggregate of items. The processors perform the computation
and, at the end, the processor that called reduce has the result.

I Allreduce: similar to reduce, but at the end all the processors have
the result. Equivalent to a reduce followed by a broadcast.

Bibliography

[1] L. Meinen, PVK Skript for Parallel Programming, 2019.

[2] M. Ghaffari, Script of Algorithms, Probability and Computing, Chapter 6.

[3] M. Herlihy et al, The Art Of Multiprocessor Programming, Morgan Kaufmann Publishers, 2014.

[4] T. Roscoe and R. Wattenhofer, Computer Systems Script, Chapters 5 and 19.

	Contents
	Introduction
	Theoretical Perspective
	Threads
	Bad Interleavings and Data Races

	Parallelism
	Performance
	Pipelining
	A typical example of parallel programming: the divide and conquer paradigm
	A taste of parallel algorithms

	Concurrency
	A Teaser
	Mutual exclusion
	Mutex Implementation
	Locks: an high level perspective
	Lock granularity
	Atomic Operations
	Transactional Memory

	Other topics
	Linearizability and Sequential Consistency
	Volatile Fields
	Consensus
	Parallel Sorting
	Skip List
	Message Passing

