
Algorithmen

und

Datenstrukturen

PVW-Skript

Leonardo Del Giudice, Soel Micheletti
1
, Jonas Meier

2
,

François Hublet, Simone Guggiari

December 28, 2021

1
Kursleiter. Kontakt: msoel@ethz.ch.

2
Kursleiter. Kontakt: jonmeier@ethz.ch.



Page 2 of 58



Contents

1 Mathematical foundations 7
1.1 Asymptotic notation (Landau’s notation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Important formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Summation - Geometric sum/series . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Über den Workshop und dieses Skript

Dieses Skript wird uns durch den Prüfungsvorbereitungsworkshop für “Algorithmen und Datenstrukturen” führen.

Das Material, das in den ersten vier Kapiteln angeführt wird, enthält das Wichtigste aus den 14 Vorlesungen des

Semesters, welches auch im Laufe des PVWs wiederholt wird. Das Motto: Alles, was in diesem Skript zu finden

ist, sollte jeder bei der Prüfung wissen.

Jedoch erhebt dieses Dokument keinen Anspruch, das offizielle Skript des Kurses zu ersetzen; insbesondere

werden detaillierte Beschreibungen und Beweise meist beiseitegelassen; bei Bedarf wird auf das offizielle Skript

und die Vorlesungsnotizen verwiesen. Die Reihenfolge entspricht der des PVWs, nicht notwendigerweise der der

Vorlesungen:

• Montag: Mathematische Grundlagen (Kap. 1) + Suchen und Sortieren (Kap. 3);

• Dienstag: DP und Greedy (Kap. 2) + Programmierung.

• Mittwoch: Fortsetzung DP + Datenstrukturen (Kap. 3);

• Donnerstag: Graphenalgorithmen (Kap. 4);

• Freitag: Fortsetzung Graphenalgorithmen und Programmierung.

Dieses Skript enthält für jedes Kapitel auch zusätzliche
¨

Ubungen. Nach einer Wiederholung der wichtig-

sten Inhalte in der ersten Stunde des PVWs widmen wir die zweite Stunde gemeinsam zu lösenden
¨

Ubungen (im

folgenden als “Exercises” gekennzeichnet); in der dritten Stunde werden frühere Prüfungsaufgaben besprochen,

die je für den folgenden Tag vorzubereiten sind (in diesem Skript als “Exam questions” markiert). Zusätzlich

beschäftigen wir uns am Dienstag und Freitag mit dem Programmierung-Teil der Prüfung.

Im Laufe der Woche werdet die Studierenden darum gebeten, ihre Fragen zu den Programmieraufgaben, die

im Laufe des Semesters zu lösen waren, dem Kursleiter per E-Mail zuzuschicken. Diese Fragen werden das Material

für die Freitagsstunde liefern, in der diese besprochen werden sollen.

f.h.
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Chapter 1

Mathematical foundations

1.1 Asymptotic notation (Landau’s notation)
The formal definitions of the various asymptotic notations are given below. Each subsection provides both the

definition of the set of functions and the relationship between two sets.

Upper bound (big-O)

O(g) := {f : N→ R+ | ∃c ∈ R+, n0 ∈ N,∀n ≥ n0 : f(n) ≤ c · g(n)}

O(f) ≤ O(g)⇔ ∃c, n0.∀n ≥ n0.f(n) ≤ c · g(n)

Lower bound (big-Omega)

Ω(g) := {f : N→ R+ | ∃c ∈ R+, n0 ∈ N,∀n ≥ n0 : f(n) ≥ c · g(n)}

Ω(f) ≥ Ω(g)⇔ ∃c, n0.∀n ≥ n0.f(n) ≥ c · g(n)

Tight bound (big-Theta)

Θ(g) := {f : N→ R+ | ∃c1, c2 ∈ R+, n0 ∈ N,∀n ≥ n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

Θ(f) = Θ(g)⇔ ∃c1, c2n1, n2.∀n ≥ n1.f(n) ≤ c · g(n) ∧ ∀n ≥ n2.f(n) ≥ c · g(n)

Therefore:

Θ(f) = Θ(g)⇔ O(f) ≤ O(g) and Ω(f) ≥ Ω(g)

Limits of quotients and asymptotic relations

Let f, g : R→ R+
such that the limit of

f
g exists. Then:

lim
x→∞

f

g
=∞⇒ g ∈ O (f) andf ∈ Ω (g)

lim
x→∞

f

g
= C ∈ R+ \ {0} ⇒ f ∈ Θ(g) and g ∈ Θ(f)

lim
x→∞

f

g
= 0⇒ f ∈ O (g) and g ∈ Ω (f)

7



1.2. IMPORTANT FORMULAE CHAPTER 1. MATHEMATICAL FOUNDATIONS

Master theorem

Let T : N→ R+
be a non-decreasing function such that for all k ∈ N and n = 2k,

T (n) ≤ aT
(n
2

)
+O

(
nb

)
for some a ∈ R+

, b ∈ R. Then

• If b > log2 (a), T (n) ∈ O
(
nb

)
;

• If b = log2 (a), T (n) ∈ O
(
nlog2 a · log n

)
;

• If b < log2 (a), T (n) ∈ O
(
nlog2 a

)
.

Equivalents of sums of na, a > 0

For a > 0, let

ua
n =

n∑
i=0

ia.

We have the asymptotic tight approximation

ua
n = Θ

(
na+1

)
.

Notion of (temporal) complexity

The time complexity (short: complexity) of an algorithmA is the number of elementary operations it takes to exe-

cuteA. The complexity is generally expressed a function of some measuren of the input, often its size, sometimes

its value. As A applied to different entries of the same size n can have different runtimes based on which input it

is given, we need to distinguish between

• Worst-case complexity (default): the maximum number of elementary operations necessary for any input

of size n,

• Average-case complexity: the average number of elementary operations necessary for inputs of size n,

• Best-case complexity: the minimum number of elementary operations necessary for any input of size n.

1.2 Important formulae
Following some important definitions, identities and formulas used in induction and combinatorial problems are

given. It is best to know those by heart.

1.2.1 Combinatorics
Factorial

n! = n · (n− 1) = 1 · 2 · 3 · ... · n ∀n ∈ N 0! = 1

Binomial coefficient (
n

k

)
=

n!

k!(n− k)!

Useful identities(
n

0

)
=

(
n

n

)
= 1

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

) (
n

n− k

)
=

(
n

k

)
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CHAPTER 1. MATHEMATICAL FOUNDATIONS 1.3. LOGIC AND PROOFS

1.2.2 Summation - Geometric sum/series
n∑

i=0

xi =
xn+1 − 1

x− 1

1.2.3 De l’Hôpital rule

Let f, g : R→ R be differentiable functions with f(x)→∞, g(x)→∞ for x→∞. If limx→∞
f ′(x)
g′(x) exists,

then

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

1.3 Logic and proofs
1.3.1 How to write good proofs
Good proofs are:

• Always provided—a result without a proof is almost like no result at all;

• Honest, readable, clear and concise—there is no practical difference between the corrector not being able

to read or understand your proof and your proof being wrong;

• Full sentences, not simply a sequence of equations or computations without explanations;

• Not mixing abbreviations/math with English/German text (write “for all”, “there exists” in text, not “∀”,

“∃”), and write computations on separate lines when useful;

• Equipped with an introduction sentence stating what is proven and ending with a conclusion sentence

recalling what has been proved;

• Avoiding expressions that suggest that some result if evident or needs not be proven at all, except in the rare

cases when it obviously is the case (“it is clear”, “it is trivial”, “we clearly see that”, “this is simple”...)—these

formulations are commonly misused by people not wanting or not able to prove the underlying statement;

• Written from top to bottom and from left to right which means:

1. (Always!) state the hypothesis A,

2. State the theorem, result or lemma that proves A⇒ B,

3. Conclude that B holds.

In particular, sequences of equations aiming at proving some equality or inequality generally start from

what is known to arrive at what is to be proven. If one side of an equation has to be developed to obtain

the other side, then start from this one side to arrive at the other.

e.g. To prove (a+ b+ c)
2
= a2 + b2 + c2 + 2 (ab+ bc+ ca), do

(a+ b+ c)
2
= (a+ b+ c) · (a+ b+ c)

= a2 + ab+ ac+ ba+ b2 + bc+ ca+ cb+ c2

= a2 + b2 + c2 + 2ab+ 2bc+ 2ca

= a2 + b2 + c2 + 2 (ab+ bc+ ca) ;

NOT

(a+ b+ c)
2
= a2 + b2 + c2 + 2 (ab+ bc+ ca)

a2 + ab+ ac+ ba+ b2 + bc+ ca+ cb+ c2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca

a2 + b2 + c2 + 2ab+ 2bc+ 2ca = a2 + b2 + c2 + 2ab+ 2bc+ 2ca

0 = 0.
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1.4. EXERCISES CHAPTER 1. MATHEMATICAL FOUNDATIONS

1.3.2 The induction principle
Proofs by induction are used to prove results of the type “for alln,A(n)” whereA(n) is some statement depending

on n. Of course, n might be any positive integer, but it could also be more specifically a power of two, a multiple

of some number etc. depending on the structure of the problem.

When writing inductive proofs, it is essential to keep in mind their specific structure; the following is for a

statement of the type “for all n ∈ {1, 2, . . . }, A(n)”:

0. Induction statement: define A(n).

1
2 . “Let us prove by induction over n. . . ”.

1. Base case: prove A(1) or A(0) (and in some particular cases more than one base case is needed).

2. Induction step: prove A(k)⇒ A(k + 1)

(a) State induction hypothesis (“assume A(k)”);

(b) State what is to be proven (“let us prove A(k + 1)”);

(c) Prove A(k + 1).

3. (recommended) Conclusion sentence.

Note that both part of an induction proof (base case and induction step) are equally important: leaving out

one of them immediately makes the proof invalid.

1.3.3 Proofs by contradiction (indirect proofs)
In a proof by contradiction, we start by stating the opposite of our claim and deduce a logical contradiction from

it. We then conclude that our claim has to be true.

The structure of a proof by contradiction is:

0. Let us prove A.

1. “Assume by contradiction that¬A”.

2. Derive a contradiction.

3. “As this is a contradiction with. . . , we have proven A”.

1.4 Exercises
1. Asymptotics

(a) Given the following functions

n5 + n log n4
√
n

(
n

3

)
216 nn n!

2n

n2
log8 n

find an order for which it holds that if a function. f is to the left of g, then g grows strictly faster

than f

(b) True or false?

i. log2
(
n1000

)
∈ O (log10

√
n);

ii. n4 ∈ Ω
((

n
4

))
;

iii. log log n ∈ Ω
(
log2 n

)
;

iv. e
√
lnn ∈ O

(√
elnn

)
;

v. For all a > b, nb ∈ O (na);

Page 10 of 58



CHAPTER 1. MATHEMATICAL FOUNDATIONS 1.4. EXERCISES

vi. For all a > b, ebn ∈ O (ean);

vii. For all a > b, log bn ∈ O (log an);

viii. Repeat the last three questions with Θ instead of O;

ix. There exists b > 0 such that n! ∈ Ω
(
nb

)
;

x. There exists b > 0 such that n! ∈ O
(
nb

)
;

xi. There exists some function f such that f ∈ Ω (n log n) and f ∈ O
(
n2

)
,but f ̸= n log n and

f ̸= n2
.

(c) Give the simplest tight bound for the following formulae:

i. P (n) = 15n41 + 14n42 + log n;

ii. Q (n) = n41 + n42 + e5n;

iii. R (n) = n2+13
n3+n+8 + n−2

;

iv. S (n) =
√
elnn

.

2. Proofs by induction

(a) Prove the following variant of the geometric sum above:

1 + a+ a2 + · · ·+ ak =
ak+1 − 1

a− 1
.

(b) Prove that for all n ≥ 1, the following identity holds:

n∑
i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3
.

(c) Prove Bernoulli’s Inequality i.e., for all n ∈ N0 and x ∈ R, x > −1,

(1 + x)n ≥ 1 + nx

holds.

(d) Prove that for all n ∈ N+
following equation holds:

n∑
i=1

1

i(i+ 1)
=

n

n+ 1
.

(e) Prove that for all n ∈ N+
following equation holds:

n∑
i=1

(2i− 1) = n2.

(f) Prove that for any n ∈ N, n3 + 2n is divisible by 3.

3. Recursion and induction

(a) Let k ∈ Z. We define the following integer sequence u:

u0 = 1

u1 = k

un = 2un−1 − un−2 n ≥ 2.

Prove that for n ≥ 1,

un = nk − (n− 1).
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1.5. EXAMQUESTIONS CHAPTER 1. MATHEMATICAL FOUNDATIONS

(b) Given is the following conditional recursive function:

T (n) =

{
5 · T

(
n
7

)
+ 8, if x > 1

3, x = 1

Find a closed formula for T (n) and prove it using complete induction. You may assume that n is a

power of 7.

Now replace 7 by 2 in the definition of T . Could we use a theorem from the course to obtain an

upper bound without induction?

1.5 Exam questions
• FS 2020: T1.a), T2.a)-c);

• HS 2019: T1.a), T1.g), T2.a)-b), T2.d)

• FS 2019: T1.e)-f);

• HS 2018: T1.h)-i);

• HS 2017: T1.i)-l);

• HS 2016: T1.j)-m).
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Chapter 2

Algorithmic methods: DP and Greedy

2.1 Dynamic Programming
Dynamic programming is a technique that allows to solve certain problems with exponential-time naive solutions

in usually polynomial (order ofO (na) for some a ∈ N) or pseudopolynomial (order ofO (Na) for some a ∈ N,

whereN is the value of an input parameter) time. It achieves this by avoiding to recompute subproblems multiple

times, instead saving those intermediate results in either a tableT or a memo mapM , depending on the approach.

DP approaches with tables vs. memoization are generally equivalent:

• With a table, you generally solve problems bottom-up: all subproblems have to be solved and complexity

analysis is simpler;

• With memoization, you generally solve problems top-down; only useful subproblems must be computed

and writing the solution is often easier, but recursion can lead to some time overhead
1
.

Below, we present two pseudo-codes for computing the Fibonacci number Fn for n ≥ 0 with tables and

memoization.

Algorithm 1 Fibonacci numbers – bottom-up/imperative/table

function F(n)

if n = 0 then
return 0

v ← new int [n+ 1]
v [0]← 0
v [1]← 1
for i ∈ {2, . . . , n} do

v [i]← v [i− 1] + v [i− 2]
return v [n]

2.1.1 Structure
In an exam, it is important to follow this structure when solving a DP problem. The structure allows to correctly

describe the solution to a DP problem and makes it easier to understand and implement.

• Definition of table:

– Dimensions and index range (starting at 0 or 1?),

– Meaning of entry and type;

1
The idea that recursive implementations are necessarily less efficient than non-recursive ones is often exaggerated, especially given the

capabilities of modern compilers and/or of functional programming languages. Still, this might be a real issue in some cases.
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Algorithm 2 Fibonacci numbers – top-down/recursive/memoization

m← new map()
function F(n)

if n ≤ 1 then
return n

if n ∈ m.keys() then
return m [n]

r ← F (n− 1) + F (n− 2)
m [n]← r
return r

• Computation of entry:

– Initialization,

– Recursive formula: how to compute an entry from previous ones;

• Calculation order:

– Dependencies: on which previous entries does a new entry depend?

– Which global order ensures this?

• Extract solution:

– How to extract solution value once table has been filled,

– How to extract complete value (sequence, subset...);

• Running time

An easy way to remember all the points is the abbreviation Smirost, each letter of which corresponds to one

point above: Size, Meaning, Initialization, Recursive formula, Order, Solution, Time.

Note that ‘size’ (sometimes also called ‘dimension’) includes how many vector-space dimensions the table has

(e.g. 2D) but also the size of each dimension (e.g. n × m) and the range of the index in each dimension (e.g.

i ∈ {0, . . . , n − 1}, j ∈ {1, . . . ,m}) whereas ’meaning’ includes both the informal meaning of one entry

relative to its index (e.g. T [i, j] = how many combinations... as well as the entry type (e.g. T [i, j] : int).

2.1.2 How to solve DP exercises?
There are a few steps that you may want to follow:

1. Read the task at least twice: What is given? What is to be computed?

2. In a typical DP task, we must first generalize the problem and identify subproblems.

(a) What are potential subproblems? Typical cases are: all left or right subarrays instead of the whole

subarray; all k ≤ n instead of only n; all nodes except only start or target node...

(b) Describe the subproblems. How many are there? (n) Is there a subproblem that exactly corresponds

to the original problem?

(c) How do the subproblems depend upon one another? What must be computed first, what must be

computed later? How much does an update cost? (k)

(d) Is backtracking useful?

3. Follow the 6 steps from the previous subsection to describe your algorithm, including its correctness and

complexity (in general, the complexity ist k · n).
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2.1.3 Worst-case asymptotic runtime
It is equal to the size of the DP table (in 2D: r · c where r is the number of rows and c the number of columns)

multiplied by how long it takes to compute one entry in the worst case. You also have to add the time to extract

the solution. In 2D, this is:

O(r · c · entry + extraction)

2.1.4 Complexity: caveats
The phrase ‘the complexity of algorithm X ’ is in general a shortcut for ‘the worst-case asymptotic runtime com-

plexity of algorithm X ’: other cases (average complexity, space complexity etc.) are generally marked as such.

Moreover, it is essential to distinguish clearly between polynomial and pseudopolynomial runtimes. An al-

gorithm is polynomial iff it computes its output in time polynomial in the size of its input. An algorithm is

pseudopolynomial iff it computes its output in time polynomial in the value of one of its input parameters.

Consider the following naive algorithm:

Algorithm 3 Find smallest prime divisor of n

i← 2
while i ≤ n do

if n is a multiple of i then
return i

else
i← i+ 1

Does this algorithm have polynomial runtime? This algorithm takes as input an integer n. This means that

the size of its input, coded as a binary number, is ⌊log2 n⌋ bits. Now, in the worst case (if n is prime), it needs

n iterations of the while-loop, each of which has constant time complexity. As a consequence, the overall time

complexity isΘ(n). Butn is not polynomial in ⌊log2 n⌋ (actually, it is exponential in ⌊log2 n⌋), so the algorithm

is not polynomial. Nevertheless, it is pseudopolynomial, because n is polynomial (linear) in the value n of the

input.

2.1.5 Types of tables
You can have 1D, 2D or even nD tables, depending on the problem. In the exam, DP problems often tend to

follow some classic schemes; once you know these, all other can be seen as reformulations of the same problem.

To know how to set up your table, try to see how you can use the solution of a subset of what you are trying

to solve to derive your solution.

One good approach is to proceed incrementally, i.e. consider solving the problem under the assumption you

can only use one single element, then extend it to two, and so on, each time using the previous result to avoid

unnecessary calculations.

The trick lies in seeing which previous entries you need to use. Depending on the problem, you might want

to move left and ev. up from your current cell to retrieve the needed values. In some problems the amount of cells

to move has to be computed, as it might depend on the entry.

Usually, the DP table either contains elements of type int or bool; the former when we want to determine

some form of cost, for example when we have to select a series of elements to take; the latter usually indicates if it

is possible to create a desired sequence with a subset of the elements available.

2.1.6 Backtracking
It is the technique of extracting the solution from the DP table by following the cells in reverse order from the

final computed cell. This is useful in problems of the type “find a path that minimizes some cost”. Once you find

the minimal total cost, you backtrack from there, saving in reverse order the path to follow, which you will output

when you reach the beginning.
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2.1.7 Keep in mind
In DP problems it is normally asked to describe an algorithm to compute what is required. Therefore, the em-

phasis is on correctness, clarity and precision, and not on actual implementation. Keep the answer length to a

minimum! Focus on how to compute an entry once you have explained the meaning and the base cases, so use

concise mathematical notation and eventually case distinction. Something like

T [i, j] =

{
T [i− 1, x] if ...
T [i− 1, j − xi] if ...

Also, remember to specify the ranges your indexes can take and the meaning of such a definition.

2.2 Greedy algorithm
Greedy is an algorithmic paradigm that follows the idea of making the optimal choice locally at each stage. A greedy

algorithm is nothing more than a DP algorithm where each subproblem depends only on one other subproblem!

For many problems the greedy algorithm does not provide an optimal solution; however, when it does, its

ease of implementation and short execution time offer a very powerful approach to combinatorial problems. In

other cases, greedy algorithms can serve as cost-efficient approximation algorithms of complexer problems. The

proposed solution might be very close or even the same of the optimal, based on the problem and the specific

values.

2.3 Exercises
1. Theory questions

(a) Name algorithms seen in the course that are DP or greedy algorithms.

(b) Is the above algorithm for computing the Fibonacci sequence polynomial? pseudopolynomial?

2. DP and greedy problems
For each of the following problems, design a DP and/or a greedy algorithm that solves it and discuss its time

and space complexity. For greedy algorithms, also provide a correctness proof.

(a) Knapsack I
A set of n items is given, each one with a weight wi > 0 and a value vi. We are looking for a subset

S ⊆ {1, ..., n} of all elements such that the combined weight

∑
i∈S wi does not exceed a given max

weight W and the total value

∑
i∈S vi of the selected items is maximized.

(b) Knapsack II
A set of n liquids is given, each one with a density di > 0 (in kg by liter), a value vi (in CHF by liter)

and a finite supply si > 0. We are looking for a choice of volumes q1 ≤ s1, . . . , qn ≤ sn for each

liquid such that the combined weight

∑n
i=1 diqi does not exceed a given max weightW and the total

value

∑n
i=1 viqi of the selected items is maximized.

(c) Coin Exchange
We are given a set S = {s1, s2, ..., sn} of coin values (e.g. in Swiss francs that would be {1, 2, 5} if

we don’t consider cents) and we are also given an amount N . The problem asks in how many ways a

cashier could give change for N CHF if he has as infinite disposal of coins of values in S.

(d) Lights
We are given a sequence of n bits B = (b1, b2, ..., bn), each of which encode the state of the i-th

light li in a sequence of n lights (1 = on, 0 = off). We know that we can control the lights in two ways:

either by performing one operation and changing the state of light li (flipping its bit), or to perform

one collective operation up to light lk (with the cost of 1 operation) and change the state of all the

lights in (l1, ..., lk). The goal of this problem is to find the minimum number of operations we have

to perform to turn off all the lights.
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(e) Stairs
Imagine having a stair with n steps, and a cute bunny that, starting from step 1, can run up the stair

hopping either 1, 2 or 3 steps at a time. Count in how many different ways the bunny can run up the

stairs.

(f) Robot
Given are two indices x and y of an x × y grid. You have a robot starting at position (0, 0). This

robot can only move along the positive axes, either one step right or one step up. Count how many

different ways the robot has to reach position (x, y).

(g) Line wrapping I
Given a sequence of wordsw1, . . . , wn of lengths ℓ1, . . . , ℓn separated by spaces and a maximal num-

ber of characters per lineL > maxi ℓi, determine the positions at which to insert line breaks in order

to print the text (without breaking any words) using as few lines as possible.

(h) Line wrapping II
Given the samew1, . . . , wn andL, determine the positions at which to insert line breaks to minimize

the sum of the squares of the number of remaining spaces at the end of each line.

(i) Grammar parsing with Cocke-Younger-Kasami
A context-free grammar in Chomsky Normal Form (CNF) is a sequence of rules that can have one of

two forms:

i. C → α where C is a ‘category symbol’ and α is a word, meaning that word α is matched by

category C . For example, Name→ Alice encodes the fact that the word Alice is a Name.

ii. C → AB where A, B and C are categories, meaning that a phrase of category C can be

obtained by concatenating two phrases of categories A and B. For example FullName →
Name Surname encodes the fact that a full name is a name followed by a surname.

The language of a category of the grammar is the set of all phrases matched by this category. For

instance, in grammar

G = {Name→ Alice, Surname→ Mustermann, FullName→ Name Surname} ,

the language of category FullName is {Alice Mustermann}. Given a grammar G with R cat-

egories, a category S in G and a phrase p = w1, . . . , wn of length n, determine in time O(n3R)
whether p is in the language of S.

Hint: Consider all subsequences of p.

2.4 Exam questions
• FS 2020: P2;

• HS 2019: T4.c), P2;

• FS 2019: T3.a)-c), P1;

• HS 2018: T2, P2;

• HS 2016: T3.

2.5 Programming exercises
• HS 2018 P2

Given an M ×N matrix A filled with 0s and 1s, find the size of the largest square submatrix of zeros in A:

– In timeO(M2 ·N2) for 10/20 points,
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– In timeO(M ·N ·min(M,N)) for 15/20 points,

– In timeO(M ·N) for 20/20 points.

• HS 2019 P2

Given a string s and a list of words D, return the length of the longest initial sequence of s that can be split

into words from D, possibly with repetitions:

– Only single-letter words in D for 2/16 points,

– In timeO(|s| · |D| · ℓ), where ℓ is the maximal length of a word in D, for 5/16 points,

– In timeO(|s| · |D|), for 14/16 points
2
,

– In timeO((|s| · ℓ · log |D|+ |D| log |D|) orO((|s|+ |D|) · ℓ) for 16/16 points.

2
This is in fact an average complexity which you are not required to prove here. For now, just focus on how to improve your algorithm

from the previous question.
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Chapter 3

Searching and sorting

3.1 Searching
In this section, we recall Abstract Data Structures (ADS) that allow for easy insertion, deletion and search of

elements, as well as the corresponding algorithms.

The most common ADS and the corresponding runtime complexities are as follows:

Data structure Search Insert Delete
Unsorted Array O(n) O(1) O(n)

Sorted Array O(log n) O(n) O(n)
Unsorted List O(n) O(1) O(n)

Sorted List O(n) O(n) O(n)
Unbalanced Tree O(n) O(n) O(n)

AVL tree O(log n) O(log n) O(log n)

We observe that there is generally a trade-off between simple data structures that allow for easy insertion and

deletion but do not preprocess the entries in order to facilitate subsequent searches (unordered array) and more

complex data structures with higher insertion and deletion costs that can be more efficiently queried.

3.1.1 Binary search
Binary search is the standard search algorithm for sorted arrays. It has an efficient (logarithmic) runtime complex-

ity.

Algorithm 4 Binary search

function FindIndex(A, e) ▷ Search item e in sorted array A
l, r ← 0, A.length− 1
while r > l do

m←
⌊
l+r
2

⌋
if A [m] = e then

return m
else if A [m] > e then

r ← m− 1
else

l← m+ 1

return "not found"

Though, with binary search, the cost of searching in ordered arrays becomes logarithmic, insertion and dele-

tion are still linear: in the worst case, i.e. when the element to be inserted or deleted is the first element of the array,

we have to shift all items one step to the right/to the left.
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3.1.2 Heaps
Even more efficient than ordered arrays are therefore tree-based structures, for which the cost of insertion and

deleting can also be made logarithmic. Heaps are a specific class of tree-based structures which provide an efficient

(constant-time) way to extract the smallest or largest element.

More precisely, min (resp. max) heaps are tree-based data structures that satisfy the following heap invariant:

if A is the parent of B, then the value of node A is smaller (resp. larger) than the value of node B. Here we

will consider binary min-heaps, which means that a parent has value smaller than the value of its (at most two)

children. In binary min-heaps, we additionally impose the following shape invariant: the heap we consider is

always a complete binary tree, i.e. all layers of the tree are filled top-down and left-to-right.

Figure 3.1: Example of 0-based heap

Implementation

The most common implementation involves an array (of fixed or dynamic size). Assuming a 0-based array (cf.

figure above), the children of node n are 2n+ 1 and 2n+ 2 and the parent of node k is node ⌊k−1
2 ⌋.

Common operations

Here are the most common operations that a min-heap must support:

• Basic operations

– Find min,

– Delete min,

– Insert,

– Find min and delete it (pop);

• Initialization

– Create empty heap,

– Heapify (transform array into heap);

• Inspection

– Return size,

– Test if empty;

• Other

– Increase/decrease,

– Delete,

– Restore heap invariant,

– Merge/union.
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Preserving the heap invariant

When updating a heap, it is essential to maintain the invariant described above. After a deletion or an insertion,

it may happen that some (single) element becomes smaller that one of its children; we can then restore the heap

invariant in logarithmic time by percolating this element down.

Algorithm 5 Restore heap invariant by percolating element down

function PercolateDown(H , i) ▷ Percolate element i in H
e← H [i]
if 2i+ 2 = H.length then

if e > H [2i+ 1] then
Swap H [i] and H [2i+ 1]

else if 2i+ 2 < H.length then
l, r ← H [2i+ 1] , H [2i+ 2]
if l < r then

if l < e then
Swap H [i] and H [2i+ 1]
PercolateDown(H, 2i+ 1)

else
if r < e then

Swap H [i] and H [2i+ 2]
PercolateDown(H, 2i+ 2)

Costs

The following table summarizes the costs of standard heap operations for three types of heaps: binary heaps, bi-

nomial heaps and Fibonacci heaps.

Operation Binary Binomial Fibonacci
search min Θ(1) Θ(1) Θ(1)
delete min Θ(log n) Θ(log n) O(log n)

insert Θ(log n) Θ(1) Θ(1)
increase key Θ(log n) Θ(log n) Θ(1)

union Θ(m log n) O(log n) Θ(1)

3.1.3 AVL Trees
AVL trees are a special kind of binary search trees that guarantee that the tree is balanced and therefore has a worst-

case access cost ofO(log n). Keep in mind that this does not hold for search trees in general: the complexity of

searching is proportional to the depth of the tree, which can be linear in degenerate cases. Therefore, an additional

property has to be mantained to ensure a good worse-time complexity; this is achieved using what is called the

balance factor.

Balance factor

We define the following quantities:

• depth(v) = distance of v to root (along unique path)

• height(T ) = maxv∈V depth(v) + 1

Then, to each node v, we can assign a number b called the balance factor:

b(v) := height(v.R)− height(v.L)
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In AVL trees, we impose that this value be in the range {−1, 0,+1}; this implies that the tree is ‘almost’ balanced,

yielding a logarithmic access time. If, after insertion or deletion, one of the factors is not in this range (i.e. it is

±2), rotations have to be performed to restore the invariant.

Rotations

The following schemas should help you execute rotations on AVL trees to restore their invariant. We distinguish

4 cases: LR, RL, LL, RR. In the first 2 cases, we need to perform 2 rotations, the first of which brings us to LL or

RR respectively. The second rotation then brings us to the final balanced configuration.

The arrows indicate which node ”rotates” and how to connect subtrees A,B,C,D to keep tree properties.

A key observation is that only one of these sequences of rotations has to be performed along the path from the

inserted node to the root to restore the heap property.

Figure 3.2: All possible rotations and their next state

Operations and complexity

The tree utilizes exactly Θ(n) space. It supports the standard tree operations search, insert and delete, all of which

have an average and worst case time complexity of O(log n).

3.2 Sorting
The following sorting algorithms should be considered standard; you should be able to execute them on paper,

code them in Java or in pseudo-code and analyze them.

3.2.1 Bogo sort
This is a fairly inefficient sorting algorithm that generates a random permutation until the elements are sorted. An

analogy with a deck of card would be to shuffle the deck, then check if it is sorted and loop if it is not.

This algorithm doesn’t have a worst case asymptotic time as it is not guaranteed to terminate within a given

time. It has an average runtime of O(n · n!).
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Algorithm 6 Bogo Sort

while¬isSorted (A) do
A← randomPermutation (A)

3.2.2 Bubble sort
Iteratively go over the array, always considering two neighbor cells. If they are not sorted, swap them, then continue

with the next pair on the right. If you go over the whole array without performing a single swap, then you are done.

The variable swapped is for this purpose.

Algorithm 7 Bubble sort

swapped← true

while swapped do
swapped← false

for i ∈ {0, . . . , A.length− 1} do
if A [i] > A [i+ 1] then

Swap A [i] and A [i+ 1]
swapped← true

3.2.3 Insertion sort
This algorithm is very similar to how a human sorts a deck of cards. It proceeds by keeping a sequence of already

sorted elements, and always considering the next element in the sequence. It then inserts this element in the right

place within the sorted sequence while shifting all larger elements right.

Algorithm 8 Insertion sort

for i ∈ {0, . . . , A.length− 1} do
v ← A [i]
j ← i− 1
while j ≥ 0 and A [j] > v do

A [j + 1]← A [j]
j ← j − 1

A [j + 1]← v

3.2.4 Selection sort
This algorithm also keeps a sequence of sorted elements, iteratively expanding it with the largest of the remaining

unsorted elements. It then swaps this element with the one closest to the sorted elements. This effectively selects

the next element, hence the name.

3.2.5 Quick sort
This algorithm works by recursively choosing a pivot (one element, usually taken at the first or last position in

the array) and splitting all other elements with respect to it. It first creates sets S−
and S+

, in which all elements

smaller/larger than the pivot are stored. It then calls itself recursively on those two sets, and after they are returned

sorted, it simply concatenates them while adding the pivot in the middle. The recursion stops in the base case in

which the array contains just one element. Note that an in-place implementation is also possible, which reduces

the memory overhead. This algorithm has a worse upper bound in time of operations, but it is often used in

practice, since the average time performs better that both merge and heap sort. Note that the · operator here

means concatenation.
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Algorithm 9 Selection sort

for i ∈ {0, A.length− 2} do
m, v ← i, A [i]
for j ∈ {i+ 1, . . . , A.length− 1} do

if A [j] < v then
m, v ← j, A [j]

if m ̸= i then
Swap A [i] and A [m]

Algorithm 10 Quicksort

function QuickSort(A)

if A.length ≤ 1 then
return A

Pick pivot p← A[0]
for i ∈ {1, . . . , A.length− 1} do

if A [i] ≤ p then
S−.add (A [i])

else
S+.add (A [i])

S+ ← QuickSort (S+)
S− ← QuickSort (S−)
return S− · {p} · S+

3.2.6 Merge sort
This algorithm also works recursively. It splits the input into two sets, then calls itself recursively on them. After the

two sets are returned sorted, it merges them in linear time. The name derives from this last part of the algorithm.

3.2.7 Heap sort
This sorting algorithm works by inserting all keys into a min heap, and iteratively extracting the minimum (the

root) in constant time and attaching it to the list of sorted nodes. It does this n times; the overall runtime depends

on the complexity of standard heap operations.

3.2.8 Other sorting algorithms (not part of the exam)
Additionally, if you are interested in algorithms that achieve asymptotic runtime better thanO(n log n) on specific
inputs, namely linear time O(n), you can check out the following:

• Radix sort;

• Bucket sort.

Note: These algorithms achieve better asymptotic time because they do not compare elements and know the

range of the keys used. In general, the lower bound for sorting Ω(n log n) still holds.

3.2.9 Costs of sorting algorithms
Classical algorithms

Here are reported the min and max costs for a few sorting algorithms, based on their input size n, as well the

particular type of input that leads to that particular complexity.

Page 24 of 58



CHAPTER 3. SEARCHING AND SORTING 3.2. SORTING

Algorithm 11 Merge sort

function MergeSort(A)

if A.length ≤ 1 then
return A

n← A.length
n1 ← n

2
n2 ← n− n1

for i ∈ {0, . . . , A.length− 1} do
if i < n1 then

S−.add (A [i])
else

S+.add (A [i])

S+ ← MergeSort (S+)
S− ← MergeSort (S−)
i← 0 ▷ Merge S+

and S−

j ← 0
while i < n1 and j < n2 do

if S− [i] ≤ S+ [j] then
R.add (S− [i])
i← i+ 1

else
R.add (S+ [j])
j ← j + 1

Concatenate remaining elements to R
return R

Algorithm 12 Heap sort

H ← CreateMinHeap ()
for i ∈ {0, . . . , A.length− 1} do

H.insert (A [i])

for i ∈ {0, . . . , A.length− 1} do
v ← H.pop ()
R.add (v)

return R
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Table 3.1: Best and worst case costs for sorting algorithms

bubblesort insertion sort selection sort quicksort
b.c. w.c. b.c. w.c. b.c. w.c. b.c. w.c.

# comparisons Θ(n) Θ(n2) Θ(n) Θ(n2) Θ(n2) Θ(n2) Θ(n logn) Θ(n2)
# permutations 0 Θ(n2) 0 Θ(n2) 0 Θ(n) Θ(n) Θ(n logn)
corresponding order A B A B A C C C

• A = already ordered

• B = inverse order

• C = special order

Lower bound for sorting

Any general comparison-based sorting algorithm has a worst-case runtime complexity of at least Ω (n log n).

3.2.10 Properties of sorting algorithms
Stability Two objects with equal keys appear in the same order in the (sorted) output as they appeared in the

input.

In-place or in-situ describe those algorithms which transform the input using no auxiliary data structure, and

therefore no additional memory space. In some cases, additional space to store a few variables is allowed.

Table 3.2: Properties of sorting algorithms

bubble insert select quick merge heap
stable Y Y N N Y N

in-situ Y Y Y Y N Y

3.3 Exercises
1. Searching

(a) Prove that the complexity of binary search is O (log n).

(b) Suppose we are given a 2D table T of size n× n whose elements are integers such that

∀0 ≤ i < j < n, ∀0 ≤ k < n, T [i, k] ≤ T [j, k] and T [k, i] ≤ T [k, j] ,

i.e. elements are sorted both vertically and horizontally. Design an algorithm to efficiently search an

element in this table. What is its complexity?

(c) Consider a sorted doubly-linked list (SDLL), that is an ADS in which each element keeps a pointer

to the previous and next elements (or NULL, if there is no previous or next element) and all elements

are smaller than their predecessors and larger than their successors. You can assume that an already

constructed SDLL is provided to you. How to extract (read + delete) the min element of a SDLL?

How to insert a new element while preserving the invariants? How to increase a key? Provide pseudo-

code and discuss the complexity of these operations compared to the binary tree approach.

(d) Give an example of a sequence of operations that results in a worse than logarithmic runtime com-

plexity for insertion and retrieval with a simple binary search tree but is still logarithmic with an AVL

tree.

2. Sorting

(a) Run each of the above algorithms on the input

[3, 1415, 926, 535, 897, 932, 384, 626, 433] .
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(b) Analyze the worst-case runtime complexity of bubble sort, insertion sort and quicksort in detail. In-

dicate the number of iterations of each loop and the cost of every instruction in the given pseudocode.

Deduce the upper bounds above.

(c) Show that the halting condition in the while-loop of bubble sort is correct, i.e., show that whenever

a sequence of n− 1 tests does not result in any swap, the array is completely sorted.

(d) Consider the following algorithm:

Algorithm 13 Gnome sort

i← 0
while i < A.length− 1 do

if A [i] ≤ A [i+ 1] then
i← i+ 1

else
Swap A [i] and A [i+ 1]
if i > 0 then

i← i− 1

i. Run this algorithm on the input from question (a). Mark ‘phases’ in which the pointer i is first

decremented O (n) times to position an element at its correct position in the left subarray by a

series of swaps, and then incremented again to reach its original position plus one.

ii. Using your observations from the last subquestion, formally prove that this algorithm is correct

and sorts the given array in time O
(
n2

)
. Is this upper bound tight? If yes, for which instances

is it realized?

(e) Consider the following procedure:

function ComputeRanks(A)

r ← new int [A.length]
for i ∈ {0, . . . , A.length− 1} do

r [i]← 0
for j ∈ {0, . . . , A.length− 1} \ {i} do

if A [j] < A [i] or (A [j] = A [i] and j < i) then
r [i]← r [i] + 1

return r

i. What is the running time of ComputeRanks?

ii. Design a sorting algorithm based on ComputeRanks and prove that it is correct. What is its

complexity?

iii. Would your algorithm still work correctly if we replace the condition in the if block by A [j] <
A [i]? If it is the case, explain why; if it is not, give an instance in which your algorithm does not

behave as expected.

3. Another tree-based data structure: red-black trees

A red-black tree is a binary search tree with every node colored black or red such that:

• The root is black,

• The children of a red node are black nodes,

• Every path from the root to the leaves contains the same number of black nodes.

(a) Prove that the height of a red black trees with n nodes is at most 2 log2(n+ 1).
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(b) As in AVL trees, rotations can be used to restore the red-black properties above after a node has been

inserted or deleted. Here, we will only consider the case of insertions. In red-black trees, new nodes

(except the first one) are always inserted red. A necessity to restore the property only arises when

the parent of the inserted node is itself red, since red nodes cannot have red children. Describe how

rotations can be used to restore the red-black property when a red node z is inserted as the child of

another red node x.

Hint: Distinguish four cases according to whether the uncle y of z (i.e. the brother of x) is red or

black, and z is inserted to the left or to the right of x.

3.4 Exam questions
• FS 2020: T1.c), T1.e), T2.e), T3;

• HS 2019: T1.c);

• FS 2019: T1.g)-j), T3.b)-c);

• HS 2018: T1.a), T1.c)-f ), P1;

• HS 2017: T1.d)-e), T1.g)-h);

• HS 2016: T1.a), T1.g)-i).
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Chapter 4

Graph algorithms

In this chapter, technical terms are given in both English and Deutsch. Always make sure that your vocabulary is

consistent.

4.1 Definitions
We usually note G = (V,E) with

• V = {v1, ..., vn}, |V | = n the set of nodes (Knotenmenge);

• E = {e1, ..., em}, |E| = m the set of edges (Kantenmenge).

4.1.1 Undirected graph (ungerichteter Graph)
Here E ⊆ {{u, v} | u, v ∈ V } contains undirected edges which are denoted as ek = {vi, vj}. Note that here

vi and vj are in one set, which in particular implies {vi, vj} = {vj , vi}. Vertices vi and vj are called adjacent

(benachbart or adjazent) iff {vi, vj} ∈ E and a vertex vi and an edge ek are incident (inzident) iff vi ∈ ek.

4.1.2 Directed graph (gerichteter Graph)
Here E ⊆ V ×V are directed edges which are denoted as ordered pairs ek = (vi, vj). Now, (vi, vj) ̸= (vj , vi).

Vertices vi and vj are called adjacent (benachbart or adjazent) iff (vi, vj) ∈ E and a vertex vi and an edge ek are

incident (inzident) iff vi ∈ ek.

4.1.3 Bipartite graph (bipartiter Graph)
A graph is bipartite iff we can decompose its set of vertices intoV = U⊔W two disjoint sets of nodes (U∩W = ∅)

such that

• Either E ⊆ {{u,w} | u ∈ U,w ∈W} (undirected bipartite graph); or

• E ⊆ (U ×W ) ∪ (W × U) (directed bipartite graph).

4.1.4 Tree (Baum) and forest (Wald)
A tree is a graph that is both connected (zusammenh

˜
A¤ngend, i.e. there exists a path between all pairs of points)

and acyclic (azyklisch, i.e. contains no cycle, see below). A connected graph is a tree iff it has exactly m = n − 1
edges.

A forest is a graph that is acyclic, but not necessarily connected. Hence, a forest can have several connected

components (Zusammenhangskomponenten), each of which is a tree. In short, a forest is a collection of trees.
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4.1.5 Adjacency lists (Adjazenzlisten)
The adjacency lists L associate to each vi ∈ V the list L [i] of its neighbors (Nachbarn) in G, i.e.

L [i] = {vj ∈ V | vi and vj are adjacent} .

4.1.6 Adjacency matrix (Adjazenzmatrix)
Let n = |V |. The adjacency matrix A is defined as:

A ∈ {0, 1}n×n

where

ai,j =

{
1 if vi and vj are adjacent

0 otherwise

In particular, this definition implies that, for undirected graphs, A is symmetric. The particular case ai,i = 1
means that there is a loop on node vi. This is possible on both directed and undirected graphs, and depends on

the definition of graph given and the allowed cases.

4.1.7 What can or cannot we have in a graph?
In general, ‘standard’ graphs (=what will be called graphs in the exam) do not

• Contain several parallel edges between the same pair of nodes—allowing this to happen would make our

graph a multigraph (Multigraph);

• Contain hyperedges, i.e. edges with more than two endpoints—allowing this to happen would make our

graph a hypergraph (Hypergraph).

‘Standard’ graphs may or may not contain (self-)loops (Schleifen). The A&D Skript considers that ‘standard’

graphs may contain loops.

4.1.8 Sequences
Consider the sequence of vertices

⟨v1, v2, ..., vk⟩ ∈ V k.

This sequence is

• A walk (Weg) iff there are edges between vi and vi+1 for all i ∈ {1, . . . , k − 1}; in this case, the length of

the walk is k − 1;

• A path (Pfad) iff it is a walk whose vertices are all distinct;

• A tour (Reise) iff it is a walk whose edges are all distinct;

• A circuit (Zyklus) iff it is a walk with v1 = vk (starts and ends at the same vertex);

• A cycle (Kreis) iff it is a circuit for which no vertex, except the first/last one, is visited more than once;

• A loop (Schleife) iff it is a cycle ⟨vi, vi⟩ of length 1.

When the considered objects cover all vertices or all objects, this gives rise to the following definitions:

• A Eulerian walk (Eulerweg) is a walk that visits all edges exactly once, i.e. a walk of length m = |E|.

• A Eulerian circuit (Eulerkreis
1
) is a circuit that visits all edges exactly once, i.e. a walk of length m = |E|.

• A Hamiltonian path (Hamiltonpfad) is a path that visits all vertices exactly one, i.e. a path of lengthn−1.

• A Hamiltonian circuit (Hamiltonkreis
2
) is a cycle that visits all vertices, i.e. a cycle of length n.

1
Note that this terminology is not consistent with the above definition of Kreis; the German translation of the following definition is “Ein

Eulerkreis ist ein Zyklus, der alle Kanten des Graphen genau einmal durchl
˜
A¤uft, d. h. ein Zyklus der L

˜
A¤nge m”.

2
No consistency problem here; the German definition is “Ein Hamiltonkreis ist ein Kreis, der alle Knoten durchl

˜
A¤uft, d. h. ein Kreis der

L
˜
A¤nge n”.
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4.1.9 Degree

The degree (or valency) of a vertex v of a graph is the number of edges incident to this vertex, with loops counted

twice. It is denoted by deg(v).

In directed graphs, we distinguish between the in-degree deg−(v) and the out-degree deg+(v).

4.1.10 Neighborhood

The neighborhood of some vertexv (set of vertices adjacent tov) is denoted byN(v). We havedeg (v) = |N (v)|.
In directed graphs, we again distinguish between N− (v) and N+ (v). We have deg−(v) = |N−(v)| and

deg+(v) = |N+(v)|.

4.1.11 Degree-sum formula (handshaking lemma)∑
v∈V

deg(v) = 2|E| = 2m

4.2 BFS & DFS
Breadth- and depth-first search are two very similar algorithms most commonly used to explore graphs. More than

single algorithms, they are algorithmic templates in which the action to be performed on each node (independantly

from the exploration itself) must be adapted to every context.

The algorithms below are presented for the case of connected graphs; for graphs with several connected com-

ponents, several runs, one by connected component, are necessary.

4.2.1 Stacks and Queues

Stacks and queue are two elementary ADS that can be implemented with (doubly-)linked lists.

Stack

Lifo (last in, first out) data structure: inserted elements are retrieved by inverse order of insertion.

• push (x) : push object x on top of the stack

• pop : removes last object added to stack. Throws error if stack empty.

Queue

Fifo (first in, first out) data structure: inserted elements are retrieved by order of insertion.

• enqueue (x): add object x at the end of the queue

• dequeue : removes first object added to the queue. Throws error if queue empty.

Additional methods and complexity

Methods enqueue anddequeuemight be also called push and pop. In addition, stacks and queues might share

several methods which allow for testing emptyness (isEmpty), returning length (length), returning the head

element (top or end) without deleting it (head) or deleting all elements (clear).

An essential observation is that all operations above (except clear) have constant-time runtime complexity.
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4.2.2 Breadth-first search (BFS)
In BFS, nodes are explored from a root r by order of increasing distance to the root.

Algorithm 14 Breadth-first search

Q← new queue ()
Q.push (r)
D ← {r} ▷ Stores nodes that are done (in Q or already processed)

while¬Q.isEmpty () do
v ← Q.pop ()
/*do something with v*/

for w s.t. v and w are adjacent in G do
if w ̸∈ D then

Q.push (w)
D ← D ∪ {w}

The complexity of BFS is O (n+m): each node is considered exactly once and each edge exactly twice.

The time at which an element v is first added to the queue and the time at which all elements in the subtree

of root v, including v, have been processed, are called pre- and post-time of v respectively and denoted by pre (v)
and post (v). The same terminology can also be used for BFS.

4.2.3 Depth-first search (DFS)
In DFS, nodes are explored top-down from a root r, always exploring all descendants of a node before exploring

its non-explored peers. There are two standard implementations of DFS.

The first one is imperative; it is similar to the implementation of BFS above, where we replace the queue by a

stack.

Algorithm 15 Depth-first search, imperative style

S ← new stack ()
S.push (r)
D ← {r}
while¬S.isEmpty () do

v ← S.pop ()
/*do something with v*/

for w s.t. v and w are adjacent in G do
if w ̸∈ D then

S.push (w)
D ← D ∪ {w}

The second one is recursive, more compact and in some sense more natural:

Algorithm 16 Depth-first search, recursive style

function DFS(v, G, D = ∅)
/*do something with v*/

for w s.t. v and w are adjacent in G do
if w ̸∈ D then

D ← D ∪ {w}
DFS (w,G,D)

DFS (s,G)

The complexity of DFS is also O (n+m).

Page 32 of 58



CHAPTER 4. GRAPHALGORITHMS 4.3. SHORTEST PATHALGORITHMS

4.2.4 Topological sort
A topological sorting of a graph G is an ordering≺ of V such that for all u, v s.t. u and v are adjacent, u ≺ v. If a

topological sorting exists, it can be produced by running DFS on the graph and adding each node to the ordering

after handling its children. The multiple runs of DFS in the algorithm below handle possible non-connectedness.

Algorithm 17 Topological sort

function DFS(s, G, T , D)

for w s.t. v and w are adjacent in G do
if w ̸∈ D then

D ← D ∪ {w}
DFS (w,G, T,D)

T ← T ∪ {s}
T ← []
D ← ∅
for v ∈ V do

if v ̸∈ D then
DFS (v,G, T,D)

The complexity of topological sort is O (n+m).

4.3 Shortest path algorithms
Shortest path algorithms in graphs solve the problem of finding a path between two vertices, minimizing the sum

of edge costs along the path. The cost (or weight) for a given edge e = (vi, vj) is given as wij or w(i, j). Recall

that n = |V |, m = |E|.
There are essentially three types of shortest path algorithms: one-to-one (computes distance between a pair

of nodes), one-to-all (computes distance between one node and all other nodes), all-to-all (computes distances

between all pairs of nodes).

For any nodesu and v in a graph, whenever v is accessible fromu and there exists a negative weight cycle which

is also accessible for u, parts of arbitrarily low cost can be found between u and v. Therefore, most shortest path

algorithm require that there are no negative cycles in the graph, which can be tested using e.g. Bellman-Ford’s

algorithm.

4.3.1 BFS
Type One-to-one or one-to-all

Complexity Θ(n+m)

Restriction on input All edges weights are equal

Idea One-to-one: run DFS from source and stop as soon as you reach the destination; one-to-all: run DFS from

source and choose first path you find to any other node.

4.3.2 Floyd-Warshall’s algorithm
Type All-to-all

Complexity Θ
(
n3

)
Restriction on input No negative cycles
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Idea A DP algorithm, finds shortest path between all pairs in an incremental fashion, using previously stored

results. More precisely, for all 1 ≤ i, j, k ≤ n, it computes sp(i, j, k), which is the shortest path from vi to

vj using only vertices from the set {v1, ..., vk}. To compute the next intermediate result sp(i, j, k + 1), we can

use the previous results: the new shortest path can still be computed either using only vertices from that set or

combining a path from vi to vk+1 with a path from vk+1 to vj :

sp(i, j, 0) = w(i, j)

sp(i, j, k + 1) = min{sp(i, j, k), sp(i, k + 1, k) + sp(k + 1, j, k)}

4.3.3 Dijkstra’s algorithm
Type One-to-all

Complexity O (m+ n log n)

Restriction on input No negative edge weights

Idea For each node, stores the best path from source and previous node along this path. Iterates along unvisited

nodes, always picking the previously unvisited node with least distance to the root. If neighbor v of current visited

node u has higher cost from source than the sum of cost of u and path w(u, v), sets its new cost to this sum and

previous node to u. Mark u as visited and repeat.

The actual cost of the algorithm is O(m ·Tdk +n ·Tem), with Tdk the time to decrease a key in the ADS and

Eem the time to extract the minimum of the DS. If we use adjacency lists and a binary heap, we reach our time

above.

Dijsktra’s algorithm is one of the most important—if not the most important—algorithm in CS. You
should know its structure, its complexity, and be able to implement in pseudo-code and in Java when an
implementation of the required ADS is provided.

4.3.4 Bellman-Ford’s algorithm
Type One-to-all

Complexity O (n ·m)

Restriction on input No negative cycles

Idea Very similar to Dijkstra, but instead of repeatedly picking the node with minimal cost, processes them all

n − 1 times. This allows the shortest path to propagate in the graph correctly. Worse time than Dijkstra’s but

negative edges are accepted.

4.3.5 Johnson’s algorithm
Type One-to-all

Complexity O
(
n2 log n+ nm

)
Restriction on input No negative cycles

Idea Starts with a transformation applied on the original graph that removes all negative edges. For this, adds a

new node q connected to all existing ones with weight0. Finds the cost of the shortest path from q tov,h(v), using

Bellman-Ford. The costs of the edges of the original graph are updated to wn(u, v) := w(u, v) + h(u)− h(v).

At the end, node q is removed and Dijkstra’s algorithm used on the new graph without negative weightswn. Then

uses Dijkstra’s algorithm on this new graph.
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4.4 Minimal spanning trees
A minimal spanning tree (MST, minimaler Spannbaum) of a graphG = (V,E) is a treeT with verticesV (T ) =
V and edges E (T ) ⊂ E such that

∑
e∈E w (e) is minimal among all such trees.

Note When analyzing the complexity of algorithms that involve the number of vertices n as well as the number

of edges m, be aware that as m ≤ n2
, we also have logm ≤ log

(
n2

)
= 2 log (n) = O (log n).

4.4.1 Borůvka’s algorithm
Complexity O (m log n)

Idea Constructs a spanning forest iteratively until it becomes a spanning tree. Starts with each vertex in a distinct

component (a trivial tree with one vertex and zero edge). All vertices select their nearest neighbor simultaneously,

and all corresponding edges are added. This results in a number of trees being formed. Then, all of these trees

select again their smallest outgoing edge, which are added to the forest, dividing the number of trees by two at

each iteration. The process goes on for at most Θ(log n) rounds until only one connected component remains.

4.4.2 Prim’s algorithm
Complexity O (m log n) (binary heap and adjacency lists), can be improved to O (m+ n log n) with Fi-

bonacci heaps

Idea A variant of Dijkstra’s algorithm, where for each vertex v not already processed, we keep the cost of the

shortest edge connecting v to the tree under construction. Just as in Dijkstra, extends the current tree with the

edge e = (w, v) and vertex v of minimal cost, updating the costs of neighbors of v. Repeats until all vertices are

covered.

4.4.3 Kruskal’s algorithm
Complexity O (m log n)

Idea Sorts edges by increasing order of weight and tries to add them in this order, abstaining from it whenever

adding the new edge would result in a cycle. The final set of edges is a spanning tree.

4.4.4 Union-find
Both Borůvka’s and Kruskal’s algorithms require an ADS that allow us to retrieve the connected component of

a vertex and unify two connected components efficiently. One such ADS is union-find, which typically provides

the following interface:

• Create (n) initializes a union-find structure with n objects {0, . . . , n− 1} that all have their own con-

nected component (n of them in total), each indexed by some i ∈ {0, . . . , n− 1};

• Find (i) returns the index of the connected component of object i;

• Union (i, j) finds the indices of the connected components of objects i and j and merges these two con-

nected components into one.

Reasonably simple implementations have an amortizedO (log n) running time for bothUnion and Find; more

elaborated ones yield an amortized O (α (n)) time, where α is the extremely slowly growing (quasi-constant)

inverse Ackermann function.
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4.5 Exercises
1. Theory questions

(a) True or false?

i. In an undirected graph, a tight bound for the number of edges is n2
.

ii. In an undirected graph, a tight asymptotic bound for the number of edges is Θ
(
n2

)
.

iii. If the maximum degree of any node in an undirected graph G is 1, then this graph is a tree.

iv. The complexity of computing the out-degree of a vertex v in an adjacency matrix is Θ(deg v).

v. The complexity of computing the sum of all out-degrees of vertices in an adjacency matrix is

Θ
(
n2

)
.

vi. The list of vertices accessible from a vertex v in a graph G can be computed by using at most

n− 1 multiplications of n× n matrices.

vii. A connected graph is Eulerian (i.e. contains a Eulerian circuit) iff all its vertices have even degree.

viii. A graph contains a Eulerian walk iff all its vertices have even degree.

ix. Testing if a graph is Eulerian is NP-complete.

x. The post-order of BFS always gives a valid topological ordering.

(b) Is the pseudo-code of the second DFS implementation still correct if we swap the two lines in the

if block? If yes, explain way. Otherwise, provide an input that leads to an incorrect output if the

modified algorithm is run on it.

(c) Give an example of a graph that has no topological ordering. What is the result of running on this

graph the topological sorting algorithm given above?

(d) Give examples of graphs onn = 2k−1 vertices that have exactly 1,n, 2n andn! topological orderings

respectively.

2. Shortest paths

(a) Implement Dijkstra’s algorithm in pseudo-code. You can assume that you are provided with an al-

ready implemented class Table that has the following interface:

class Table {

Table(int n); //creates empty table with n uninitialized fields

int get(int i) throws NotInitialized; //returns the value of

//field i if initialized

int set(int i, int v); //sets the value of field i to v,

//initializing it if necessary

int smallest(); //returns i such that table.get(i) is minimal

}

(b) Design an algorithm to compute the costs of one-to-all shortest paths in a graph where all edge costs

are 0 or 1. The complexity of your algorithm should beO (α(n)m+ n), where α is quasi-constant.

You might want to check out the section on union-find!

(c) Explain how we can retrieve the shortest paths between all pairs of vertices after running Floyd-Warshall’s

algorithm. What is the runtime of doing so (in tight asymptotic notation)?

(d) In medieval Switzerland, there were n cities connected by m one way roads. Each city i charged mer-

chants that traversed it a toll ti. You are a merchant and want to travel from your boss’s farm in Visp

VS to your hometown of Mumpf (city 1). Design an algorithm to find the path that minimizes your

travel cost. You can assume that you will not be asked to pay a toll when you will leave Visp (only

merchants entering the city are charged).

(e) Consider the same setting as in the previous question. Now you are in Mumpf and your boss in Visp.

You want to choose some city in Switzerland where you could meet to discuss about your next raise

in salary. You both have to travel and want (i) first, to minimize the sum of your costs (ii) then, among

all pairs of paths of same cost, to share the costs as fairly as possible. Solve the problem algorithmically.
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3. Minimal spanning trees

(a) Prove that there exists only one path between any pair of nodes in a tree.

(b) Prove or disprove: For all vertices u, v of a graph G, the only path between u and v in an MST T of

G is a shortest path between u and v in G.

(c) Give an example of a graph on which Prim’s and Kruskal’s algorithms return different correct MSTs.

4.6 Exam questions
• FS 2020: T1.b), T1.d), T2.d), T4, P1;

• HS 2019: T1.b), T1.d)-f), T2.c), T3, T4.a)-b), P1;

• FS 2019: T1.d), T2, T3.a), P2;

• HS 2018: T1.b), T1.g), T3;

• HS 2017: T1.b)-c), T1.f), T2, T3;

• HS 2016: T1.d)-f), T2.
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Chapter 5

List of common linguistic mistakes

Important: Do not mix languages in your exam submissions! Choose the language you are most comfortable with!

5.1 Deutsch
Das Wort Graph heißt im Genitiv/Dativ/Akkusativ Singular Graphen, also: betrachten wir einen Graphen, nicht

*betrachten wir einen Graph.

5.2 English
The singular of vertices is vertex, not *vertice (the Italian word for ‘summit’).

German Kreis = English cycle; German Zyklus = English circuit.
Forms of the relative pronoun who: who (Nom.), whom (Dat./Akk.), whose (Gen.). The relative pronoun who

is only used for people, not for objects, for which you should use that or which.

Distinguish between the noun half (pl. halves) (Hälfte, -n) and the verb to halve (halbieren). Distinguish

between the noun proof and the verb to prove.
Do not put commas before relative pronouns! Write every number that is and not every number, that is.
Another word with an irregular plural is leaf (pl. leaves).

Avoid colloquial contractions (gonna etc.).

Do not translate German also by English also. The German word also means therefore, hence.
Use once, twice and not one time, two times.
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Chapter 6

Solutions of exercises

Chapter 1
1. Asymptotics

(a) We propose following solution:

216 log n4 log8 n
√
n

(
n

3

)
n5 + n

2n

n2
n! nn

In simplest asymptotic notation

O (1) O (log n) O
(
log8 n

)
O (
√
n) O

(
n3

)
O
(
n5

)
O
(
2n

n2

)
O (n!) O (nn)

(b) True or false?

i. True

ii. True

iii. False

iv. True, note that limn→∞
e
√
lnn

√
elnn

= 0

v. True

vi. True

vii. True

viii. False, False, True

ix. True, actually for all b ∈ N
x. False

xi. True, f(x) = x1.5
for example

(c) Give the simplest tight bound for the following formulae:

i. P (n) = 15n41 + 14n42 + log n ∈ O
(
n42

)
;

ii. Q (n) = n41 + n42 + e5n ∈ O
(
e5n

)
;

iii. R (n) = n2+13
n3+n+8 + n−2 ∈ O

(
n−1

)
;

iv. S (n) =
√
elnn ∈ O (

√
n).

2. Proofs by induction

(a) Proof by induction over n of P (n) ≡
∑n

i=0 a
i = an+1−1

a−1 .

• Base Case n = 0
0∑

i=0

ai = a0 = 1 =
a− 1

a− 1
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• Induction Hypothesis
We assume that for some n ∈ N, P (n) holds true.

• Induction step n→ n+ 1

n+1∑
i=0

ai =

n∑
i=0

ai + an+1 I.H.

=
an+1 − 1

a− 1
+ an+1 =

an+1 − 1 + (a− 1)an+1

a− 1
=

an+2 − 1

a− 1

Therefore by mathematical induction P (n) holds for all n ∈ N

(b) Proof of P (n) ≡
n∑

i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3
by induction over n.

• Base Case n = 1

1∑
i=1

k(k + 1) = 1(1 + 1) = 1(1 + 1)
3

3
=

1(1 + 1)(1 + 2)

3
.

• Induction Hypothesis
We assume that for some n ∈ N, P (n) holds true.

• Induction step n→ n+ 1

n+1∑
i=1

i(i+ 1) = (n+ 1)(n+ 2) +

n∑
i=1

i(i+ 1)

I.H.

= (n+ 1)(n+ 2) +
n(n+ 1)(n+ 2)

3

=
(n+ 1)(n+ 2)(n+ 3)

3

=
(n+ 1)((n+ 1) + 1)((n+ 1) + 2)

3
.

(c) Proof of P (n) ≡ ∀x > −1, (1 + x)n ≥ 1 + nx by induction over n.

• Base Case n = 0

∀x > −1, (1 + x)0 = 1 ≥ 1 + 0 · x.
• Induction Hypothesis

Let us assume that for some n ∈ N it P (n) holds.

• Inductive Step:
Let x > −1.

(1 + x)n+1 = (1 + x)n(1 + x)

IH
≥ (1 + nx)(1 + x)

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x.

(d) Proof of P (n) ≡
n∑

i=1

1

i(i+ 1)
=

n

n+ 1
by induction over n.

• Base Case
1∑

i=1

1

i(i+ 1)
=

1

1 + 1
.

• Induction Hypothesis
Let us assume that for some n ∈ N, P (n) holds
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• Induction Step

n+1∑
i=1

1

i(i+ 1)
=

1

(n+ 1)(n+ 2)
+

n∑
i=1

1

i(i+ 1)

IH
=

1

(n+ 1)(n+ 2)
+

n

n+ 1

=
1 + n(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 2n+ 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)

=
n+ 1

n+ 2

=
n+ 1

(n+ 1) + 1
.

(e) Proof by induction over n of P (n) ≡
n∑

i=1

(2i− 1) = n2
.

• Base Step: n = 1
1∑

i=1

(2i− 1) = 2 · 1− 1 = 1

• Induction Hypothesis
Let us assume for some n ∈ N that P (n) holds.

• Inductive Step:

n+1∑
i=1

(2i− 1) = (2(n+ 1)− 1) +

n∑
i=1

(2i− 1)

= (2n+ 1) +

n∑
i=1

(2i− 1)

IH

= (2n+ 1) + n2

= n2 + 2n+ 1

= (n+ 1)2

(f) Proof of P (n) ≡ 3 | (n3 + 2n) by induction over n.

• Base Case n = 1 we prove P (1)
13 + 2(1) = 3.

3 is divisible by 3.

• Induction Hypothesis
Let us assume that for some n ∈ N that P (n) holds.

• Inductive Step

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 5n+ 3

= (n3 + 2n) + (3n2 + 3n+ 3)

IH

= 3u+ 3(n2 + n+ 1)

= 3(u+ n2 + n+ 1).
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3. Recursion and induction

(a) Let k ∈ Z. We define the following integer sequence u:

u0 = 1

u1 = k

un = 2un−1 − un−2 n ≥ 2.

We’ll prove that for n ≥ 1

un = nk − (n− 1).

by total induction over n.

• Base Case n = 1

u1 = k = k · 1− 0 = k

• Induction Hypothesis
Assume that for some n ∈ N it holds that for any n′ < n

un′ = n′k − (n− 1)

• Induction Hypothesis n→ n+ 1

un+1
def

= 2un − un−1

IH

= 2(nk − (n− 1))− ((n− 1)k − (n− 2))

= 2nk − 2n− 2− nk + k + n− 2

= nk + k − n = (n+ 1)k − n

(b) Given the following conditional recursive function:

T (n) =

{
5 · T

(
n
7

)
+ 8, if x > 1

3, x = 1

We use telescoping to arrive to an hypothesis.

Let n > 1 we also assume n is a power of 7, we write n = 7k.

T (n) = 5 · T
(n
7

)
+ 8

= 5 ·
(
5 · T

( n

72

)
+ 8

)
+ 8

= 5 ·
(
5 ·

(
5 · T

( n

73

)
+ 8

)
+ 8

)
+ 8 = ...

= 5k · 3 + 8 ·
k−1∑
i=0

5i

= 5k · 3 + 8 · 5
k − 1

4

= 5k · 3 + 2 · 5k − 2

= 5k+1 − 2.

We now have our hypothesis, ∀k ∈ N, P (k) ≡ T (7k) = 5k+1 − 2

We prove ∀k ∈ N, P (k) by complete induction over k

Base Step: we prove P (0):
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T (70) = T (1) = 3 = 51 − 2.

Inductive Step

The Inductive Hypothesis (IH) allows us to use P (n) to prove P (n+ 1)

T (7k+1) = 5 · T (7k) + 8

IH

= 5 · (5k+1 − 2) + 8

= 5 · 5k+1 − 10 + 8

= 5k+2 − 2.

If we replace 7 by 2 in the definition of 2, we can use the Master theorem with a = 5 and b = 0 (as

8 is constant) to show T (n) ∈ O
(
nlog2 5

)
≃ O

(
n2.32

)
.

Chapter 2
1. Theory questions

(a) Longest increasing subsequence, longest common subsequence, edit distance, matrix chain multi-

plication, subset sum, knapsack, but also many standard algorithms: mergesort, quicksort, Floyd-

Warshall...

(b) The above algorithm for computing the Fibonacci sequence has complexityO(n). The bottom-up

variant first initializes an array of size n+1 (O(n)) and then performs n−1 iterations of a loop with

constant-time body (one addition, two array reads, one array write) before returning the last element

of the array, also in constant time. The top-down variant computes every field of m only once and

uses it at most twice, which results in the same time complexity. As n is the value and not the size of

the input (the size is s = log n, which is the number of bits needed to encode n), this algorithm is

pseudopolynomial, but not polynomial.

2. DP and greedy problems

(a) DP. Define the following table T of size (W + 1)× (n+ 1):

∀0 ≤ w ≤W, 0 ≤ j ≤ n, T [w, j] = max
S⊆{1,...,j},

∑
i∈S wi≤w

∑
i∈S

vi.

The result can be read in entry T [W,n]. For w, j with w = 0 or j = 0, since all wi are positive, we

have T [w, j] = 0.

For w > 0, j > 0, we compute

T [w, j] =

{
max (T [w, j − 1], T [w − wj , j] + vj) if vj > 0, wj ≤ w
T [w, j − 1] otherwise

for increasing w and j.

We haveO(nW ) entries in our table, each of which can be computed in constant time. The overall

complexity isO(nW ).

(b) Greedy. Consider the following algorithm: This algorithm first sorts the liquids by order of decreasing

“worth density” (in CHF per kg). It then tries to add as much of the first liquid as it can (until the

knapsack is full and/or the supply is exhausted); if the volume left in the knapsack (represented by

r) is positive, it proceeds with adding from the second liquid, then from the third, fourth etc. The

sorting costs O(n log n) (including the n divisions), while the main loop costs O(n) (n constant-

time iterations). Let us prove that this algorithm is correct.
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Algorithm 18 Fractional knapsack

Sort (di, vi) such that
v1
d1
≥ v2

d2
≥ · · · ≥ vn

dn

q ← int[n]
r ←W
for i ∈ {1, . . . , n} do

q[i]← min
(
si,

r
di

)
r ← r − q[i]di

Assume w.l.o.g. that
v1

d1
> v2

d2
> · · · ≥ vn

dn
and that vi > 0 for all i (nonpositive values can be

safely ignored). We can safely suppose that all
vi
di

are different, since weight can be shared arbitrarily

between liquids of same worth density without affecting the result.

First, we observe that the choice of q returned by the algorithm is always of the form

q∗ =

[
s1, . . . , sk,

W −
∑k

j=1 sjdj

dj
, 0, . . . , 0

]
.

for some k. In other words, the algorithm always takes the whole supply of the most valuable liquids

until it eventually reaches the end of the list or a liquidk+1which it can not exhaust without reaching

the capacity limit of the knapsack. Only a fraction of this liquid (corresponding to the space left in

the knapsack) is chosen, and the following liquids are not considered.

If the full supply of all liquids can be taken without exceeding the capacity of the knapsack, then

it is clear that this choice is optimal, since we have assumed that all vi are positive. Otherwise, let

q∗, k as above, and consider an optimal choice q′ of q. We now show that q[i] ≥ q∗[i] for all i ∈
{1, . . . , k + 1}, which proves q′ = q∗ since q∗ already fills up the knapsack. By contradiction,

let i0 be the smallest i ∈ {1, . . . , k + 1} such that q′[i0] < q∗[i0]. By definition of i0, we have

q′[i] ≥ q∗[i] and therefore q′[i] = q∗[i] for all 0 ≤ i < i0. Hence, the total spare volume available

to store q′[i0 + 1], . . . , q′[n] is at most W −
∑i0−1

j=1 q∗[j]dj − q′[i0]di0 . The constraint is

n∑
j=i0+1

q′[j]dj ≤W −
i0−1∑
j=1

q∗[j]dj − q′[i0]di0 .

Moreover, since our algorithm exhausts the knapsack capacity, we get

n∑
j=i0+1

q∗[j]dj = W −
i0∑

j=1

q∗[j]dj

so

n∑
j=i0+1

(q′[j]− q∗[j]) dj ≤ (q∗[i0]− q′[i0]) di0 . (∗)
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We have

n∑
j=1

q′[j]vj −
n∑

j=1

q∗[j]vj = (q′[i0]− q∗[i0]) vi0 +

n∑
j=i0+1

(q′[j]− q∗[j]) vj

= (q′[i0]− q∗[i0]) vi0 +

n∑
j=i0+1

(q′[j]− q∗[j])
vj
dj

dj

≤ (q′[i0]− q∗[i0]) vi0 +
vi0+1

di0+1

n∑
j=i0+1

(q′[j]− q∗[j]) dj

≤ (q′[i0]− q∗[i0])

(
vi0 −

vi0+1

di0+1
di0

)
= (q′[i0]− q∗[i0])︸ ︷︷ ︸

<0

vi0︸︷︷︸
>0

(
1− vi0+1

di0+1

di0
vi0

)
︸ ︷︷ ︸

>0

< 0

(c) DP. Define the following table T of size (N + 1)× (n+ 1):

∀0 ≤ x ≤ N, 0 ≤ j ≤ n, T [x, j] = min
c∈Nj ,

∑j
i=1 cisi=x

j∑
i=1

ci

with the convention that min ∅ = +∞. We find the final result in T [N,n]. For all j, we have

T [0, j] = 0 and for all x > 0, we have T [x, 0] = +∞.

For x > 0, j > 0, we compute

T [x, j] =

{
min (T [x, j − 1], T [x− sj , j] + 1) if sj ≤ x
T [x, j − 1] otherwise

for increasing x and j.

As for knapsack I, the overall complexity isO(nN).

(d) DP. Define the following tables N and F of size n+ 1 each.

N [i] = min. number of operations to turn b1, . . . , bi on ∀0 ≤ i ≤ n

F [i] = min. number of operations to turn b1, . . . , bi off ∀0 ≤ i ≤ n.

When the tables are filled in, the result can be read in F [n]. Clearly, N [0] = F [0] = 0.

For the recurrence relation, we first observe that the order of operations does not matter. The two

types of operations (single or collective switch) are simply translations, either by [0 . . . 010 . . . 0] or

by [1 . . . 10 . . . 0], in the vector space Fn
2 , and therefore commutative.

For 0 < i ≤ n, assume that N [i−1] and F [i−1] are already computed. By the previous remark, to

obtain an optimal sequence turning b1, . . . , bi on or off, we can first perform all operations that do

not involve light i and then all operations that involve light i. Possible operations that impact bi are of

two sorts: either a single switch si of bi or a collective switch cj of b1 to bj for some j ≥ i. Performing

both is never optimal w.r.t. b1, . . . , bi, since, for all k ∈ {1, . . . , i}, si ◦ cj(k) = ci−1(k) which

spares one operation. Hence, the last operation performed can be chosen to be either si, ci or none

(in case bi is already set to its final value). If the last operation performed in an optimal sequence to

turn b1, . . . , bi off is si, the optimal moves to reach the previous configuration (b1, . . . , bi−1 off) can

be found in N [i − 1]; if the last operation is ci, the optimal number of moves to turn b1, . . . , bi−1

on is F [i− 1]. We get:

N [i] =

{
max(F [i− 1], N [i− 1]) + 1 if bi = 0
N [i− 1] if bi = 1

F [i] =

{
max(F [i− 1], N [i− 1]) + 1 if bi = 1
F [i− 1] if bi = 0

.
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The complexity of each update isO(1), resulting in an overall time complexity ofO(n).

(e) DP. Define the following table T of size n:

∀1 ≤ j ≤ n, T [j] = number of sequences of hops to reach j

The result can be read in entry T [n].

Since the bunny starts on step 1, there is only one (empty) sequence of hops leading to step 1, so

T [1] = 1. For j < 4, we easily compute T [2] = 1, T [3] = 2. For j ≥ 4, the last hop may be of

height 1, 2 or 3, so that

T [j] = T [j − 1] + T [j − 2] + T [j − 3].

We have O(n) entries in our table, each of which can be computed in constant time. The overall

complexity isO(n).

Alternatively, the previous recurrence relation can be used to compute the closed-form formulaT [n] =
n2−3n

2 + 2 and return the result in timeO(1).

(f) DP. Define the following table T of size (x+ 1)× (y + 1):

∀0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y, T [x′, y′] = number of sequences of moves to reach (x′, y′)

The result can be read in entry T [x, y].

Since the robot starts at (0, 0), T [0, 0] = 1. For x′ > 0, T [x′, 0] = 1 and for y′ > 0, T [0, y′] = 1.

For x′ > 0, y′ > 0, we have

T [x′, y′] = T [x′, y′ − 1] + T [x′ − 1, y′]

as the robot comes either from the left or from the bottom.

We have O(xy) entries in our table, each of which can be computed in constant time. The overall

complexity isO(xy).

Alternatively, the previous recurrence relation can be used to compute the closed-form formulaT [x, y] =(
x+y
x

)
=

(
x+y
y

)
and return the result in timeO(1).

(g) Greedy. Add words (and spaces between words) to the current line as long as it is still possible. Then

insert a line break, print the next word on the next line, and repeat.

Let us prove that this is optimal. More precisely, for any k ≥ 1 and for any sequence of words that can

be wrapped onk lines, let us prove by induction onk that the greedy algorithm returns a placement on

k lines. For k = 1, the result is obvious. Assume now that the property holds for all k′ up to a certain

rank k ≥ 1. Consider an optimal placement P (not necessarily obtained by the greedy strategy) on

k + 1 lines. If P can be obtained by the greedy strategy, we are done. Otherwise, there is a first line

1 ≤ i ≤ k such that there is enough space at the end of line i to add the next word w′
, which in

the optimal placement P has been added to line i + 1. Now, move as many words as possible from

Pi+1, Pi+2 . . . up intoPi to fill line i as in the greedy algorithm. Letwr be the first word that cannot

be added into i. Looking at P , we see that the subsequence wr, . . . , wn can be wrapped on at most

k− i < k lines, so by our induction hypothesis the greedy algorithm is optimal on this subsequence.

Therefore, the full greedy algorithm wraps the text on at most i − 1 + 1 + k − i = k lines, which

completes the proof.

(h) DP. Define the following table T of size n:

∀1 ≤ i ≤ n, T [i] = cost of a square-sum optimal wrapping of (w1, . . . , wi)

The result can be read in entry T [n].

Clearly, T [1] = (L− ℓ1)
2

. For i > 1, we have the recurrence relation

T [i] = min
1≤j≤i,(

∑i
p=j ℓp)+i−j≤L

T [j − 1] +

L−

 i∑
p=j

ℓp

− i+ j

2

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which tries all possible sequences of words fitting into the last line.

We haveO(n) entries in our table, each of which can be computed in timeO(n). The overall com-

plexity isO(n2).

The positions at which to break lines can easily be found by backtracking, remembering which choice

of j minimizes the objective function. This only results in an additional linear cost.

(i) DP. First, observe that only categories that appear on the left-hand-side of at least one rule are relevant,

since those that never do are always empty. Hence, w.l.o.g., we can assume that all categories appear

on the left-hand-side of a rule, and that there are at most R categories.

Define the following table T of sizeO(n2R):

∀1 ≤ i ≤ j ≤ n,C category in G, T [i, j, C] =

{
True if (wi, . . . , wj) is matched by C
False otherwise.

The result can be read in entry T [1, n, S].

We can fill in the table by order of increasing j − i (the order of categories does not matter). Subse-

quences of length 1 can only be matched by a rule of the form C → α:

∀1 ≤ i ≤ n,C category in G, T [i, i, C] = (∃C → wi ∈ G).

Longer subsequences can only be obtained by concatenation of two shorter subsequences using a rule

of the form C → AB, provided that we can split the sequence wi, . . . , wj into two subsequences

wi, . . . , wk−1 and wk, . . . , wj matched by A and B respectively:

∀1 ≤ i < j ≤ n,C category in G,

T [i, j, C] = (∃k ∈ {i+ 1, . . . , j} ,∃C → AB ∈ G. T [i, k − 1, A] ∧ T [k, j, B]).

Each entry of our table checks only those rules that have the corresponding category in their left-hand

side. Therefore every category needs to be checked only once for each subsequence (i, j). The overall

cost of filling in the table is thereforeO(n2R).

Programming exercises
• HS 2018 P2

– O(M2 ·N2): Test all possible squares.

– O(M ·N):

Define the following table T of sizeO(M ·N):

∀1 ≤ i ≤M, 1 ≤ j ≤ N, T [i, j] = size of largest square of 0s with south-east corner (i, j).

The result can be extracted as max1≤i≤M,1≤j≤N T [i, j]2.

We fill in the table by order of increasing i and j. Squares located along the northern or western border

of the grid can be of size at most 1, hence

∀1 ≤ j ≤ N, T [0, j] =

{
1 if A[0, j] = 0
0 otherwise

∀1 ≤ i ≤M, T [i, 0] =

{
1 if A[i, 0] = 0
0 otherwise

.

Let i > 0, j > 0. We observe that for all ℓ, there is a square of 0s of size ℓ with its south-east corner

located at (i, j) iff there are squares of 0s of size ℓ − 1 with their south-east corners at (i − 1, j),

(i, j − 1), (i− 1, j − 1) and we have A[i, j] = 0. This yields the following formula:

∀1 ≤ i ≤M, 1 ≤ j ≤ N, T [i, j] =

{
min(T [i− 1, j], T [i, j − 1], T [i− 1, j − 1]) + 1 if A[0, j] = 0
0 otherwise

.

Each entry can be computed in constant time. The overall complexity is thereforeO(M ·N).

Code:
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int maxArea = -1;

if(M == 0 || N == 0) {

out.println(0);

continue;

}

int S[][] = new int[M][N];

for(int j = 0; j < N; j++) {

S[0][j] = B[0][j];

}

for(int i = 1; i < M; i++) {

S[i][0] = B[i][0];

for(int j = 1; j < N; j++) {

S[i][j] = B[i][j];

if(B[i][j] == 1) {

int minOfThree = S[i-1][j];

if(S[i][j-1] < minOfThree)

minOfThree = S[i][j-1];

if(S[i-1][j-1] < minOfThree)

minOfThree = S[i-1][j-1];

if(minOfThree+1 > S[i][j])

S[i][j] = minOfThree+1;

}

}

}

for(int i = 0; i < M; i++)

for(int j = 0; j < N; j++)

if(S[i][j] * S[i][j] > maxArea)

maxArea = S[i][j] * S[i][j];

out.println(maxArea);

– O(M ·N ·min(M,N)): Either use a boolean table

∀1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ min(M,N)

T [i, j, k] = the square of size k with south-east corner (i, j) is filled with 0s

and use a recurrence relation similar to the one above, or use the same table as in the O(M · N)
solution and fill it in by considering only T [i− 1, j − 1] and inspecting the values of the T [i− 1, y]
and T [x, j − 1] every time in timeO(min(M,N)).

• HS 2019 P2

– O(|s| · |D| · ℓ):

Define the following table boolean T of sizeO(|s|):

∀1 ≤ i ≤ |s|, T [i] = s1, . . . , si can be split into words from D.

The result can be extracted as max {1 ≤ i ≤ |s| | T [i] is true}.

We fill in the table by order of increasing i. We have:

∀1 ≤ i ≤ |s|, T [i] = ∃j < i,∃w ∈ D, (T [i− |w|] ∨ i = |w|) ∧
(
si−|w|, . . . , si−1 = w

)
.

The first conjunct in the “exists” expresses that the string s1, . . . , si−|w| can be split in words of D
(which in particular holds when it is empty) while the second conjunct checks that w terminates

s1, . . . , si. In other words, our recurrence formula simply expresses that in order to be splittable into
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words fromD, a string has to be obtainable by concatenating a (shorter) string which is itself splittable

into words from D and a word from D.

We obtain a solution in timeO(|s|·|D|·ℓ)by naı̈vely iterating over all words fromD for each position

and testing whether all |w| ≤ ℓ characters at the end of s1, . . . , si match those of w.

– O(|s| · |D|):

We can easily spare on the cost of each comparison by stopping as soon as two non-matching charac-

ters are detected. In practice, this is sufficient to ensure the desired complexity.

The following computation is only for your understanding, and would not be required at the exam.

Assuming that characters are uniformly distributed in both D and s over an alphabet of size N ≥ 2,

two strings of length k diverge on average at position

k∑
i=1

i

(
1

N i−1
− 1

N i

)
=

k−1∑
i=0

i+ 1

N i
−

k∑
i=1

i

N i

= 1 +

k−1∑
i=1

N−i − k

Nk

=
1−N−k

1− 1
N

− k

Nk

≤ N

N − 1
≤ 2

which is sufficient to ensure that we stop on average afterO(1) steps when comparing two strings. In

this case, the resulting complexity isO(|s| · |D|).

Code:

int solve(String str) {

int n = str.length();

boolean T[] = new boolean[n];

for (int i = 0; i < n; i++)

for (String w: this.dictionary)

if(w.length() <= i+1)

T[i] |= (str.regionMatches(i-w.length()+1, w, 0, w.length())

&& (i+1 == w.length() || T[i-w.length()]));

for (int i = n-1; i >= 0; i--)

if (T[i]) return i+1;

return 0;

}

– O(|s| · ℓ · log |D|+ |D| log |D|):

Instead of testing all words in D, we can test whether the ℓ different suffixes of length 1 to ℓ of

s1, . . . , si are in the dictionary. If we sort the dictionary first (in timeO(|D| log |D|)), each of the ℓ
prefixes can be searched for in timeO(log |D|), which yields the desired result.

– O((|s|+ |D|) · ℓ):

Note: This solution is very advanced and not required for the exam.

We can further improve the efficiency of the search described in the previous solution by using a Trie,

a simple data structure which efficiently stores a dictionary in a tree. We store the reverse of each word

w ∈ D in a Trie T . Building the tree costs O(ℓ · |D|), while all suffixes of s of length ≤ ℓ can be

tested in timeO(ℓ). This results in an algorithm with overall complexityO((|s|+ |D|) · ℓ).

Chapter 3
1. (a) In each step of binary search, we check the difference between two integers (to detect base cases),

compute a mean of two integers, read one entry in the array, perform one comparison and do at most
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one recursive call. Each of these operations costs constant time. Therefore, the complexity of the

algorithm is proportional to the number of steps needed. Since the size of the search area is halved in

each iteration, there are log2 n = O(log n) such steps, and the overall complexity isO(log n).

(b) Consider algorithm 19. The pseudocode is similar in spirit to traditional 1D binary search. Depending

Algorithm 19 Two-dimensional binary sort

function Search(T, s, i = 0, j = n, k = 0, l = n)

if i = j ∧ k = l then
return s = T [i, k]

p←
⌊
i+j
2

⌋
q ←

⌊
k+l
2

⌋
m← T [p, q]
if m < s then

return Search(T, s, i, p, q+1, l)∨ Search(T, s, p+1, j, q+1, l)∨ Search(T, s, p+1, j, k, q)
else

return Search(T, s, i, p, q + 1, l) ∨ Search(T, s, i, p, k, q) ∨ Search(T, s, p+ 1, j, k, q

on the result of a comparison between the searched element s and the entrym located in the “middle”

of the considered subtable, we can safely reduce the search space to three of the four quadrants. The

correctness argument is simple: if T [p, q] = m < s, then for all i ≤ p, j ≤ q, we have

T [i, j] ≤ T [i, q] ≤ T [p, q] = m < s

and thus we know that s is not contained in the top-left quadrant. The same holds for the bottom-

right quadrant if m ≥ s.

Regarding complexity, we have the following recurrence relation

T (n) = 3T (n/2) +O(1) = 3T (n/2) +O(n0).

As log2 3 > 0, the Master theorem yields T (n) = O(nlog3 2) = O(n1.58).

(c) Assume an SDLL object of the following type (here with integers):

class SDLL {

SDLL prev; //may be null

SDLL next; //may be null

int value;

};

The following functions implement extraction, insertion and key increase.

int extract(SDLL sdll) {

int value = sdll.value;

sdll.value = sdll.next.value;

sdll.next = sdll.next.next;

return value; // here O(1), vs. binary tree O(h) or AVL O(log n)

}

int insert(SDLL sdll, int value) {

while (sdll.value < value && sdll.next != null)

sdll = sdll.next;

new_sdll = SDLL();

new_sdll.prev = sdll;

new_sdll.next = sdll.next;

new_sdll.value = value;

if (sdll.next != null)
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sdll.next.prev = new_sdll;

sdll.next = new_sdll;

} // here O(n), vs. binary tree O(h) or AVL O(log n)

int move_right(SDLL sdll) {

if (sdll.next != null && sdll.next.value < sdll.value) {

int value = sdll.next.value;

sdll.next.value = sdll.value;

sdll.value = value;

move_right(sdll.next);

}

}

int increase(SDLL sdll, int new_value) {

assert new_value >= sdll.value;

sdll.value = new_value

move_right(sdll);

} // here O(n), vs. binary tree O(h) or AVL O(log n)

(d) Insertion of pre-sorted integers 1, 2, . . . , n (or n, n − 1, . . . , 1) in a simple binary search tree pro-

duces a path graph with average insertion cost
1+2+···+n

n = O(n), while the average runtime is still

O(log n) with AVL trees.

2. Sorting

(a) See Vorlesungsnotizen.

(b) See Vorlesungsnotizen.

(c) When a sequence of n − 1 tests does not result in any swap, this means (with the same notations as

in the algorithm) that A[i] ≤ A[i+ 1] for all i ∈ {0, . . . , n− 1}, and therefore

A[0] ≤ A[1] ≤ · · · ≤ A[n− 1],

meaning that the array is already completely sorted.

(d) Consider the following algorithm:

Algorithm 20 Gnome sort

i← 0
while i < A.length− 1 do

if A [i] ≤ A [i+ 1] then
i← i+ 1

else
Swap A [i] and A [i+ 1]
if i > 0 then

i← i− 1

i. We run gnome sort on A = [3, 1415, 926, 535, 897, 932, 384, 626, 433]. First, i = 0 is in-

cremented until i = 1, and 1415 and 926 are swapped, resulting in A = [3, 926, 1415, . . . ],
with subarray A[: 3] sorted and i = 0. Then i is incremented again until i = 1. This is the

end of the first phase. Then, i is incremented to 2, after which 1415 and 535 are swapped and

i is decremented to 1 with A = [3, 926, 535, 1415]. Again, as A[i] = A[1] = 926 > 535 =
A[2] = A[i + 1], we swap 926 and 535 and get A = [3, 535, 926, 1415] and i = 0. Then

i is incremented until i = 2, ending the second phase. The rest of the execution is similar. We

observe a succession of phases (starting at phase 0), with phase j starting at position i = j with

A[0..j] pre-sorted, decrementing j and swapping elements to put A[j] in place as in insertion

sort, and then re-incrementing i to reach j + 1.
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ii. Let us make the above argument formal. For all j ∈ {0, . . . , n}, we will prove the following

property by induction on j. P (j): there exists a state of the algorithm such that i = j, A[0..j]
is sorted and at most 5j2 comparisons, arithmetic and memory operations have been performed

since execution started.

The base case P (0) is trivial, since the required property holds in the initial state. Now, let 0 ≤
j < n such that P (j) holds. After reaching the state described by P (j), gnome sort compares

A[j] and A[j + 1] (two memory reads, one comparison). If A[j] ≤ A[j + 1], then after

incrementing i the subarray A[0..j + 1] is already sorted, i = j + 1 and at most 5j2 + 3 ≤
5(j+1)2 operations have been performed, which provesP (j+1). Otherwise,A[j] andA[j+1]
are swapped and i decremented. Let A−

denote the set of A before this swap. The sequence of

a comparison, a swap, two tests and a decrement is repeated until A[i] ≤ A[i + 1] or i = 0.

Then, we have

A[i] = A−[i] ≤ A[i+ 1] = A[j + 1] ≤ A[i+ 2] = A−[i+ 1] ≤ · · · ≤ A[j + 1] = A−[j]

i.e. A−[j+1]has been successfully inserted intoA[0..j+1]within at most5j operations. In the

following≤ j+1 steps, which taken together cost at most 5(j+1) operations, i is incremented

until i = j + 1. After 5j2 + 5j + 5(j + 1) = 5j2 + 10j + 5 = 5(j + 1)2 operations, we

have i = j + 1 and A[0..j + 1] is sorted, which is exactly P (j + 1).

Property P (n) shows that in timeO(n2), gnome sort correctly sorts the provided array. This

upper bound is asymptotically tight, realized on decreasingly sorted inputs.

(e) Consider the following procedure:

i. The running time of ComputeRanks isO(n2): the constant-time code within the inner loop

is run n(n− 1) times, and initialization only adds a linear extra cost.

ii. Consider algorithm 21. To show that this algorithm is correct, we need to prove two things: (i)

Algorithm 21 Rank sort

r ← ComputeRanks(A)
B ← A.copy()
for i ∈ {0, . . . , A.length− 1} do

A[r[i]] = B[i]

that all fields of A are updated (ii) that A is eventually sorted.

Concerning (i), it is enough to prove that 0 ≤ r[i] ̸= r[j] < n for all 0 ≤ i ̸= j < n, for

then all n values of R[i] must be different and thus cover the whole range from 0 to n− 1. The

inequalities 0 ≤ r[i] < n are trivial, as the r[i] are initialized to 0 and updated at most n − 1
times. Now, assume by contradiction that r[i] = r[j] for some i < j. If A[j] < A[i], then for

all 0 ≤ k < n such that A[k] < A[j] or A[k] = A[j] ∧ k < j, we also have A[k] < A[i]:
hence r[j] ≤ r[i]. But r[i] is also implemented once forA[j] < A[i], so r[i] ≥ r[j]+1 > r[j],
a contradiction. If A[i] > A[j], we obtain a similar contradiction. If A[i] = A[j], we also have

r[j] ≤ r[i], but now r[i] needs to be implemented once for A[j] = A[i]∧ i < j, again leading

to r[i] > r[j]. Hence r[i] ̸= r[j].
Now that we know that A is eventually updated according to the ranks r (i.e. for all 0 ≤ j < n,

A[j] = A[r[i]] = B[i] for some i), we can prove (ii). Let 0 ≤ i < j < n. We show thatA[i] ≤
A[j]. By (i), we have i′, j′ such that i = r[i′], j = r[j′] and A[i] = A−[i′], A[j] = A−[j′],
where A−

denotes the initial (unsorted) state of A. Assume that A[j] = A−[j′] < A[i] =
A−[i′]. Then, by the same reasoning as in (i), we have r[j′] < r[i′], which is exactly j < i, a

contradiction. Hence, we haveA[i] ≤ A[j] for all 0 ≤ i < j < n, and our algorithm is correct.

Besides the quadratic call to ComputeRanks, the rest of our algorithm is clearly linear. The

overall complexity is thereforeO(n2).

iii. No. If you replace the condition by A[j] < A[i], equal values are not treated properly. E.g. the

array [1, 1] would get ranks [0, 0] instead of [0, 1]: rank 1 would not be assigned and lemma (i)

above would fail.
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3. (a) We will prove by induction overh ∈ N that every red-black tree of heighth has at least 2
h
2 −1 nodes.

For h = 0, a red-black tree of height 0 has exactly 1 = 2
0
2 − 1 node. For h = 1. it has at least

2 ≥ 2
1
2 − 1 nodes. Now, let h > 1 and assume that the property holds for all h′ < h. Consider a

red-black tree of height h.

As h > 1, the children x and y of its root are necessarily both non-empty. Otherwise, one child (say

x) would be empty, meaning that the number of black nodes on all paths from root to leaves in the

tree would be 1. As h > 1, y has children. But, as the number of black nodes on all paths from root

to leaves would be 1, neither y nor its children could be black, meaning that both y and its children

would be red, which is not allowed (children of red nodes must be black). Hence, x and y are both

non-empty.

If x is black, then its subtree is clearly a red-black tree of height h− 1. By our induction hypothesis,

x has at least 2
h−1
2 − 1 nodes. If x is red, it has at least one child (since h > 1), which is necessarily

black (by the red-black property). The subtree corresponding to this child contains at least 2
h−2
2 − 1

nodes by the induction hypothesis. In any case, the subtree rooted at x contains at least 2
h−2
2 − 1

nodes. As the same holds for y, we get at least

2 ·
(
2

h−2
2 − 1

)
+ 1 = 2

h
2 −1+1 − 2 + 1 = 2

h
2 − 1

nodes in total, which concludes the induction.

We now have n ≥ 2
h
2 − 1, which is exactly h ≤ 2 log2(n+ 1).

(b) When z is inserted to the left of x and y is red, do

u

x

z

α β

γ

y

δ ζ

−→

u

x

z

α β

γ

y

δ ζ

and repeat upwards on u (u turning red might have broken the red-black property one level higher).

Observe that the number of black nodes on a path from root to leaves is unchanged.

When z is inserted to the right of x and y is red, do

u

x

α z

β γ

y

δ ζ

−→

u

x

α z

β γ

y

δ ζ

and repeat upwards on u.

When z is inserted to the left of x and y is black, perform the rotation
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u

x

z

α β

γ

y

δ ζ

−→

x

z

α β

u

γ y

δ ζ

and stop: since the root of the subtree is black, we cannot have introduced any violation at a higher

level.

Finally, when z is inserted to the right of x and y is black, perform the rotation

u

x

α z

β γ

y

δ ζ

−→

z

x

α β

u

γ y

δ ζ

and stop.

Chapter 4
1. Theory questions

(a) True or false?

i. In an undirected graph, a tight bound for the number of edges is n2
.

False, a better bound is

(
n
2

)
.

ii. In an undirected graph, a tight asymptotic bound for the number of edges is Θ
(
n2

)
.

True, as

(
n
2

)
∈ Θ

(
n2

)
.

iii. If the maximum degree of any node in an undirected graph G is 1, then this graph is a tree.

False, the graph could be disconnected.

iv. The complexity of computing the out-degree of a vertex v in an adjacency matrix is Θ(deg v).

False it’s inO (n).

v. The complexity of computing the sum of all out-degrees of vertices in an adjacency matrix is

Θ
(
n2

)
.

True.

vi. The list of vertices accessible from a vertex v in a graph G can be computed by using at most

n− 1 multiplications of n× n matrices.

True.

vii. A connected graph is Eulerian (i.e. contains a Eulerian circuit) iff all its vertices have even degree.

True.

viii. A graph contains a Eulerian walk iff all its vertices have even degree.

False, it can also exist if exactly two vertices have odd degree.

Page 56 of 58



CHAPTER 6. SOLUTIONS OF EXERCISES

ix. Testing if a graph is Eulerian is NP-complete.

False, it can be done in polynomial time.

x. The post-order of BFS always gives a valid topological ordering.

False, the reversed post-order provides a valid topological sorting only if the graph contains no

cycles.

(b) It will lead to undesirable bahaviour, whenever the graph contains a cycle e.g. consider K3, in this

case the algorithm will never stop.

(c) Any graph containing a cycle has no topological order. The algorithm will terminate but it will visit

the nodes in an invalid order, as no order would be a valid one.

(d) A line has exactly 1 topological order. A cycle has exactlyn orderings. A perfect binary tree has exaclty

2n orderings. An empty graph with n nodes has n! possible orderings.

2. Shortest paths

(a) Implement Dijkstra’s algorithm in pseudo-code. You can assume that you are provided with an al-

ready implemented class Table that has the following interface:

class Table {

Table(int n); //creates empty table with n uninitialized fields

int get(int i) throws NotInitialized; //returns the value of

//field i if initialized

int set(int i, int v); //sets the value of field i to v,

//initializing it if necessary

int smallest(); //returns i such that table.get(i) is minimal

}

(b) First initialize a union-find structure with n disjoint sets, each one representing a node in the graph.

This takes timeO (n)
Then loop once over all edges in O (m) and for each edge, check in time O (α(n)) if the edge has

weight 0; if it does, join (union) the sets connected by the edge. This takes timeO (α(n)m).

Then start a modified recursive BFS from source node. The modifications are the following: each

time we take an edge we increment a counter, previously initialized at 0, and once inside a node we

store that counter’s value in our output array. This modifications clearly do not affect the asymptotic

runtime of the BFS algorithm; ergo we consider the runtime of this step to beO (n+m).

Finally for every disjoint set in our union-find DS we find the minimum distance from the source to

a node in that set and set every other node’s distance to that. This takes timeO (n).

Since every step is independent from the other, the total runtime is inO (α(n)m+ n)

(c) The output of the Floyd-Warshall’s algorihm is a 3 dimensional table. Each entry (i, j, k) represents

the shortest path from i to j using only the vertices until k. Therefore the shortest path between two

nodes i and j for a graph with n nodes is stored at the entry (i, j, n) which we can read in O (1),

repeating this forO
(
n2

)
pairs of nodes will costO

(
n2

)
.

(d) We represent the map as a directed weighted graph over n nodes, each node representing a city in

Switzerland. For two nodes i, j ∈ V the edge (i, j) is created iff there is a road going from city i to

city j on the map. The weight of such an edge is the cost of entering city j (the one we would be

entering). Finally we run a simple shortest path algorithm (e.g. Dijkstra inO (m+ n log n)) to find

the shortest path from Visp to Mumpf, this is the cost of travelling there paying the tolls.

(e) We use the graph from the previous exercise but reverse all the edges (without changing the weights).

Then on the new graph we run Dijkstra’s algorithm twice, once from Visp, the other one from Mumpf.

This way we obtain the shortest paths from all nodes to Visp and Mumpf without having to run Dijk-

stran times. Once we have the cost of these shortest paths, for every node in the graph we add the cost

of going to Visp and to Mumpf. If there are multiple cheapest paths we choose the one where the cost

are divided better between the two sections. The overall runtime cost isO(2(m+ n log n) + n) =
O(m+ n log n).
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3. Minimal spanning trees

(a) Consider a tree T = (V,E) defined as a connected graph with no cycles. Per definition there cannot

be less than one path between any two vertices, otherwise it wouldn’t be connected. It remains to

show that such a path is unique. We’ll prove uniqueness by contradiction (as it’s often done), we’ll

therefore assume that there exist two different paths P1 and P2 between two vertices u and v. As P1

and P2 are different there has to be a well defined node x where P1 and P2 diverge at first. Similarly,

as they have the same endpoint (i.e. v) but they diverged before, there has to be a well defined point

y where they reconnect for the first time. Finally, if we consider the sub-paths of P1 and P2 from x
to y, they are disjoint on every node except at their respective endpoints therefore they’d form a cycle.

This contradicts the acyclicity assumption, therefore T can only contain one path for every pair of

nodes.

(b) Prove or disprove: For all vertices u, v of a graph G, the only path between u and v in an MST T of

G is a shortest path between u and v in G.

Solution
This claim is false, and it can be easily disproved with a counterexample e.g.

TODO: Insert Graph

(c) Give an example of a graph on which Prim’s and Kruskal’s algorithms return different correct MSTs.

Solution
TODO: Insert example
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