
An Efficient Encoder-Decoder Architecture for 3D
Hand Pose Estimation

Flavio Schneider
scflavio@student.ethz.ch

Soel Micheletti
msoel@student.ethz.ch

Elrich Groenewald
egroenewald@student.ethz.ch

ABSTRACT
In this paper we present a new lightweight method for es-
timating 3D hand-keypoints from a monocular image. Our
approach uses an efficient-net encoder and a novel decoder
architecture that exploits separable convolutions to sub-
stantially reduce the number of parameters. Our decoder
is trained end-to-end to produce 1D heatmaps that, unlike
2 or 3 dimensional heatmaps, produces outputs that scale
linearly with the heatmap size and key-point dimensionality.

1 INTRODUCTION
Hands are one of the main ways that we use to interact with
the world and, potentially, they could act as interface be-
tween the physical and the virtual world. A sufficiently good
estimation of the hand pose would be very useful for many
applications in multiple areas such as augmented reality and
human computer interaction. For example, it would allow
getting rid of hardware such as haptic gloves and input pads,
leading to a more natural interaction with the machine and
hence improving user experience. Another noteworthy ap-
plication is the work of Konstantinidis et al. (see [5]), where
they proposed an application for sign language recognition,
enhancing accessibility in the deaf community. For these
reasons, 3D hand pose estimation is a crucial problem in
computer vision. Despite being well-studied, it is far from
being completely solved, and the ongoing research is explor-
ing diverse directions. In the next section, we will give an
overview of the relevant literature for our work, but note
that we have considered only a small subset of the plethora
of possibilities that have been studied. We refer to [1] for a
more exhaustive overview.
In this paper we will work on predicting the hands’ con-

figuration (21 points in 3D, each point for a specific joint)
from the monocular RGB images using FreiHAND dataset
(containing around 100 thousand training samples). This task
is challenging for multiple reasons. Firstly, a human hand has
more than 20 degrees of freedom. Therefore, a lot of param-
eters are needed in order to properly model its complexity.
Since keeping the number of parameters under control was
a priority for us, many of our choices have been done to
satisfy this constraint. Secondly, predicting 3D points from
a 2D image is an inherently ill-posed task. Even in the best
case scenario where there’s no occlusion of the hand, depth

information of the key-points might be ambiguous. If we ex-
tend this problem to any image, e.g. occluded fingers due to
different hand rotations and/or hand-object interaction, the
problem becomes even harder. It’s clear that we, as humans,
have a strong prior of hands in general. We know how our
hand works, and we can infer reasonably well how a hand
is placed, even in case of occlusion. As we will explain in
Section 2, a good model should hence be able to learn a prior
on hand position, either explicitly or implicitly.

Here we present our deep-learning approach to solve the
task. The main contribution of our work is the design of a
novel decoder architecture, and we show how to properly
combine it with other components from the literature in
order to efficiently obtain satisfying predictions. Our imple-
mentation uses a lightweight model trained end-to-end. This
choice is justified by multiple considerations. Firstly, a model
with a small number of parameters usually trains faster. This
is a desirable property when searching for an optimal ar-
chitecture, especially when computing power and time are
limited, as in our case. Secondly, one of the main applications
of 3D hand-pose estimation is real-time control of virtual
objects, which is only possible if the model is lightweight
enough to run on consumer hardware such as small laptops
or smartphones. Lastly, end-to-end models are much simpler
to train and are usually more accurate than complex models
trained for the same amount of time.
On a high level, our approach can be summarized as fol-

lows:

(1) We performed multiple techniques of data augmenta-
tion (rotation, translation, scaling, etc.). This helps to
achieve the desirable equivariance property and makes
the training data more diverse.

(2) The data is passed on a pre-trained encoder (efficientnet-
b4, [10]) in order to get a meaningful representation
of the input images. Note that we didn’t freeze the
weights of the encoder, so they can still slightly change
during training.

(3) Inspired by [7], the decoder is trained to learn 63 1D
heatmaps: one for each dimension of each point to be
predicted. The 1D heatmaps are then mapped to the
final 3D representation of the points using the soft-
argmax function (a differentiable version of argmax).
To learn the 1D heatmaps, we propose an innovative



Flavio Schneider, Soel Micheletti, and Elrich Groenewald

decoder that combines 2D transposed convolutions,
average pooling and 1D convolutions.

(4) The whole architecture (including the weights of the
pre-trained encoder) is trained to minimize the mean-
squared-error between the output and the true points.

2 RELATEDWORK
The approaches for 3D hand pose estimation can be classi-
fied in two macro-categories: parametric mesh-based (that
regress parameters of a hand model such as MANO, see [9])
and keypoint-based (that regress hand keypoints directly).
A crucial distinction is that the former learns a prior of the
hand parametrized by some lower-dimensional vector (e.g.
[8]). However, there’s no clear distinction between models
that learn a prior and models trained end-to-end to predict
the 3D points. A model trained end-to-end has a reasonable
understanding of how the hand might be structured and
placed, even with occlusion. Hence, it’s very likely that an
implicit prior is learned even when training end-to-end.
In this paper, we focus on keypoint architectures. Hence,

we are going to restrict to the presentation of some impor-
tant models in this category. As mentioned in [7], 3D mesh
estimation breaks the spatial relationship among pixels in
the input and cannot model the uncertainty of the prediction.
Motivated by this observation, we focused on models that
utilize heatmaps as the target representation. Each value
of a heatmap represents the likelihood of the existence of
the joint at the corresponding pixel of the input image. The
choice of predicting heatmaps have been thoroughly studied
in the literature. Here we present two lines of research in
this direction: predicting 2D or 1D heatmaps. Note that one
could directly learn 3D heatmaps, but we did not consider
this option because it would have required a huge amount
of parameters and memory.

2D heatmaps to 3D points are models that first esti-
mate 2D heatmaps of the 2D hand-joints on the original
image, and then lift this representation to 3D points. The
first part might be implemented in different ways, either
with an encoder/decoder architecture (e.g. UNet or Hour-
glass) with an encoder pretrained on Imagenet (e.g. ResNet,
HRNet, DeepLab, etc.) with the goal of estimating a tensor
of size 𝑘 × 𝑠 × 𝑠 from a single RGB image (shape 3 × ℎ ×𝑤 ),
where 𝑠 is the heatmap size and 𝑘 the number of key-points.

1D heatmaps are models that, instead of learning 2D or
3D heatmaps, learn three 1D heatmaps for each joint. This
makes the training and the prediction faster. We mention
I2L-MeshNet (see [7]) because we follow a very similar
approach. They propose an architecture consisting of two
main components: PoseNet and MeshNet. PoseNet uses an
encoder/decoder architecture to estimate 1D heatmaps of
joints from the input image. The output of PoseNet is then

Figure 1: 63 1D heatmaps. Each heatmap represents
one dimension of a particular joint. Note that each
heatmap is similar to a Gaussian distribution, where
the mean is the value of a coordinate of the keypoints
to be predicted, and the variance quantifies the uncer-
tainty.

fed to MeshNet to predict the 3D mesh. In our case we only
need the keypoint prediction and hence worked to improve
the PoseNet architecture.

3 METHOD
In this section, we illustrate our architecture. We trained the
model for 145 epochs (around 120 hours) with batch size
32 on a single GPU to minimize the mean squared error.
We used Adam optimizer and MultiStepLR to schedule an
appropriate learning rate, starting at 10−4, then lowering it
to 10−5 after 100 epochs, and finally to 10−6 after 140 epochs.

3.1 Overview
Given the hardware constraints for the project (1 GPU train-
ing at a time), we focused not only on performance, but also
on keeping our model small. This is one of the reasons why
we train our model to learn 1D heatmaps, similar to the one
represented in Figure 1. The following subsections present
in detail the steps of the pipeline: the encoder, the decoder,
details about the data augmentation techniques, and a trick
we used in the inference phase.

3.2 Encoder
In the effort to keep our model as lightweight as possible,
we used EfficientNet-B4 [10] as the encoder. We used an
open source implementation [6] of EfficientNet with weights
pretrained on ImageNet. The encoder, similarly to ResNet,
lowers the resolution of the image while increasing the num-
ber of channel at each step. It takes as input an image of size
224 × 224 × 3 and outputs a tensor of size 7 × 7 × 448, which
is then fed to the decoder.

3.3 Decoder
This is the novel part of our architecture. Given the output
from the last layer of the encoder, its job is to predict the
63 final 1D heatmaps. The process of how this is achieved
is shown in Figure 2. On the left we have the output of the
encoder and on the right the prediction for the keypoints.



An Efficient Encoder-Decoder Architecture for 3D Hand Pose Estimation

Figure 2: Decoder diagram.

In order to properly interpret the figure we need to list the
operations we used:
(1) ConvTranspose2d(k=3, s=2, p=1, sep = False),

where 𝑘 denotes the kernel size, 𝑠 the stride and 𝑝 the
padding.

(2) ConvTranspose2d(k=3, s=2, p=1, sep = True),
similar as in point 1. However, we use a separable
convolution, which means that we use a "matrix fac-
torization" approach in order to keep the number of
parameters substantially lower.

(3) Mean(dim=2).
(4) Mean(dim=3).
(5) Conv1d(k=1, s=1, p=0).
(6) SoftArgmax, a differentiable version of argmax.
(7) Concatenation

The choice of parameters in the transposed convolutions
makes sure that the resolution of the tensor is doubled at each
step (similar to the UNet decoder). We double the resolution
until we get to 112 × 112, which will determine the heatmap
size. The yellow part of the decoder handles the 𝑥𝑦-axis,
while the red part of the decoder handles the 𝑧-axis. We
found that using a single decoding block for 𝑥𝑦𝑧 as in [7]
produced results with low accuracy on the 𝑧-axis, hence
we decided to split the depth prediction to a separate block.
The 𝑥𝑦 feature block is then averaged on both the second
and third dimension (the first dimension is the number of
channels), while the 𝑧 feature block is averaged only on the
second dimension. Taking this mean has the same effect as
average pooling, where the goal is to obtain tensors of size
𝐶 × 112 (𝐶 = 128) on which we can apply 1D convolutions to
get 23 1-dimensional heatmaps, one for each axis. Applying
soft-argmax then gives 3 vectors of dimension 21, which are
concatenated to obtain a final output of shape 21 × 3.
We have the choice of a few hyperparameters in this de-

coder, the first is 𝐶 which we choose to be 128, increasing
this number would increase the number of kernels applied
at each transposed convolution, and hence the number of

parameters. We found 128 to be a good balance between
accuracy and model complexity. The second hyperparameter
is 𝑁 which we choose to be 4, increasing this would dou-
ble the resolution for each increment and hence produce a
larger heatmap (note that on the diagram 𝑁 is the number of
blocks). The relationship with the heatmaps size is𝐻 = 7 ·2𝑁 .

3.4 Data Augmentation
We applied data augmentation during training to help with
generalization by increasing diversity in the training data.
For the final submission, we used random rotations of up
to 180 degrees in either direction. We also tried flips, color
jitter, scale and translation, but all models with those aug-
mentations performed worse.
The augmentations are applied directly to the input im-

ages. To apply the same augmentations to the corresponding
3D point labels, the 3D points are first mapped to 2D im-
age points, using the camera matrix. The augmentations are
applied to the 2D image points, after which the points are
mapped back to 3D camera coordinates, with their original
z values.
Data augmentation was useful not only in the training

phase, but also for inference. In an attempt to obtain more
robust test predictions, we averaged the predictions over dif-
ferent augmented versions of each input image. Specifically,
for each image we predicted the points for 10 different rota-
tions, which were then rotated back with the corresponding
inverse rotation and averaged.
This technique improved our final performance for each

model we applied it to. For our submitted model, it improves
performance from 6.72 to 6.24 in the public leaderboard. We
found that more rotations did not substantially improve the
accuracy.

4 EVALUATION
As already stated, the main idea of our model is to combine
a pre-trained encoder with the idea of [7] of predicting 1D
heatmaps in order to limit the number of parameters. We de-
veloped a novel decoder that exploits separable convolutions
to further increase the number of parameters. We would like
to justify the choice of the encoder (which, again, has an
influence on the number of parameters) and spend a few
words on the importance of data augmentation.

Before choosing EfficientNet-B4, we tested multiple en-
coders. We experienced that EfficientNet achieves better
performance than ResNet (see [4]) and, within the class of Ef-
ficientNet encoders, EfficientNet-B4 is well positioned in the
trade-off between performance and number of parameters.
Our final model has 19.5𝑀 parameters which is acceptable
with our computing resources. We mention that EfficientNet-
B0 had a worse performance (8.03 on the public leaderboard



Flavio Schneider, Soel Micheletti, and Elrich Groenewald

Figure 3: Visualization of the impact of data augmenta-
tion. On the left we have the prediction of the original
(not rotated) image. The images in the middle and on
the right show the predictions obtained by the same
model on the rotated image. If trained without data
augmentation (middle) the model is not equivariant.
Data augmentation (right) improves the predictions
and makes the model equivariant to rotation. Note
that the predictions on the left and on the right are not
the same, this is why we average different rotations at
inference.

after 24 hours of training, without rotation averaging during
inference), but only 5.4𝑀 parameters. This might be more
appropriate for real-time applications.

During the development of our architecture, it turned out
that data augmentation is a crucial ingredient to make the
model equivariant (i.e. keypoints are rotated with the image).
Figure 3 illustrates the positive impact of data augmentation
on our predictions: in the middle the predictions of the model
trained without data augmentation are shown, on the right
we observe that the predictions obtained by the same model
trained with data augmentation are much more accurate.
Note that the prediction on the right image are a rotated
version of the predictions on the original image on the left,
which implies that the model trained with data augmentation
is equivariant.

5 DISCUSSION
As often happens with deep learning projects, we tried multi-
ple promising approaches that didn’t work as expected. Here,
we mention three of them.

The first failed method is about a potential approach for
regularization. We observe that the 1D distributions rep-
resented by the heatmaps in Figure 1 seem a reasonable
approximation of a Gaussian distribution. However, in order
to constrain the model to learn this even better, we experi-
mented with a regularization technique. We tried to include
in the loss function a term designed to minimize the Jensen-
Shannon divergence between the heatmaps and a Gaussian
distribution with variance of two. However, this did not im-
prove the performance of the model. An explanation for this
could be that the heatmaps learned without regularization
already resemble a Gaussian distribution. Moreover, this con-
firms a trend that we often observed during this project:
simpler models tend to perform better. This could be due to

our limited computational resources and training time we
considered (between 24 and 100 hours on a single GPU).
Second, we tried to extract two different representations

from the encoder (the first one from an intermediate channel,
the second one from the final layer). The intuition on why
this could have been useful is that deeper layers, despite
being able to learn a larger field of view, might lose relevant
detailed information that can be recovered by considering
the representation in intermediate layers. However, our ex-
periments showed that this is not always the case, hence
we decided to consider only the deepest representation com-
puted by the encoder.
Finally, we mention our failed approach with convolu-

tional graph neural networks (GNN). In fact, graphs are an
appropriate tool to model human hand problems because
they can be used to learn spatial relationships between differ-
ent joints. Inspired by [2], we tried an architecture composed
by a pre-trained encoder, a convolutional GNN and an adap-
tive graph U-Net ([3]). Given an input image, the encoder
returned a tensor of size 2048. This tensor (together with a
2D initial estimate for the keypoint) was then fed to a GNN
with 21 nodes (one for each joint). The GNN learns how to
use adjacency information to modify the 2D coordinates of
the keypoints conditioned on the output of the encoder and
the initial prediction of the 2D coordinates. Finally, a Graph
U-Net architecture converts the 2D keypoints to the final
3D output using a series of graph convolutions, poolings,
and unpoolings. Similar to the classical U-Net architecture,
the dimension of the graph is first gradually reduced and
then increased to the original size of 21 nodes. The choice
of first learning 2D heatmaps and then mapping them to
the final output via the U-Net neural network is justified
by [2], where they showed that this is more accurate than
combining both steps in the convolutional GNN. In [2] they
mention that their model is well-suited for objects that are
of similar size or shape to those seen in the dataset during
training, but it might not generalize well to all categories
of object shapes. This could be a possible reason for why
this approach failed in our case, but we are not sure whether
there are other limitations that make it inaccurate.

6 CONCLUSION
We presented an encoder-decoder architecture for 3D hand
pose estimation from 3D monocular RGB images. Using a
pre-trained encoder, a novel decoder to efficiently predict 1D
heatmaps and data augmentation techniques both in train-
ing and inference phase, we developed a new lightweight
model with 19.5·106 parameters that achieves satisfying per-
formance (6.29 in the public leaderboard) with reasonable
computing resources.



An Efficient Encoder-Decoder Architecture for 3D Hand Pose Estimation

REFERENCES
[1] Theocharis Chatzis, Andreas Stergioulas, Dimitrios Konstantinidis,

Kosmas Dimitropoulos, and Petros Daras. 2020. A Comprehensive
Study on Deep Learning-Based 3D Hand Pose Estimation Methods.
Applied Sciences 10, 19 (2020), 6850.

[2] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David J Crandall.
2020. Hope-net: A graph-based model for hand-object pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 6608–6617.

[3] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. In international
conference on machine learning. PMLR, 2083–2092.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[5] Dimitrios Konstantinidis, Kosmas Dimitropoulos, and Petros Daras.
2018. SIGN LANGUAGE RECOGNITION BASED ON HAND AND
BODY SKELETAL DATA. In 2018 - 3DTV-Conference: The True Vision
- Capture, Transmission and Display of 3D Video (3DTV-CON). 1–4.
https://doi.org/10.1109/3DTV.2018.8478467

[6] Luke Melas-Kyriazi. 2020. EfficientNet-PyTorch. https://github.com/
lukemelas/EfficientNet-PyTorch.

[7] Gyeongsik Moon and Kyoung Mu Lee. 2020. I2L-MeshNet: Image-
to-lixel prediction network for accurate 3D human pose and mesh
estimation from a single RGB image. arXiv preprint arXiv:2008.03713
(2020).

[8] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. 2015. Hands
deep in deep learning for hand pose estimation. arXiv preprint
arXiv:1502.06807 (2015).

[9] Javier Romero, Dimitrios Tzionas, andMichael J Black. 2017. Embodied
hands: Modeling and capturing hands and bodies together. ACM
Transactions on Graphics (ToG) 36, 6 (2017), 1–17.

[10] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International Conference
on Machine Learning. PMLR, 6105–6114.

https://doi.org/10.1109/3DTV.2018.8478467
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/lukemelas/EfficientNet-PyTorch

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Encoder
	3.3 Decoder
	3.4 Data Augmentation

	4 Evaluation
	5 Discussion
	6 Conclusion
	References

