
Reproducible Data Science

Fundamentals

Reproducibility is a crucial ingredient to ensure that a
scientific discovery can be verified or falsified by others.
Reproducibility can be thought as an end-to-end pro-
cess including both wet and dry experiments, i.e. both
generation and analysis of data. Let’s start with some
definitions.

Reproducibility: informally, we mean a range of be-
st practices for quantitative research, including manage-
ment and sharing of data, and computational methods.
More formally, an experiment can be considered reprodu-
cible if a different research team can obtain its input data,
its computational tools, understand them, and rerun the
same methods to obtain the same result.

Replicability: in contrast to reproducibility, replicabi-
lity means that a different research team can start with
the same concept, and perhaps overlapping information,
but regenerate their own data and methods that ultima-
tely produce the same result. This is a more challen-
ging and costly process, but this is the scenario where
science arguably advances the most. Both reproducibili-
ty and replicability rely heavily on a common set of best
practices.

Reproducibility of data vs Reproducibility of ana-
lysis: the former is usually more about files (where you
put them, how you manage them...), and the latter is mo-
re about programs, code, and workflows. Roughly, it can
be seen as the difference between data and instruction in
computer programming.

Controls: positive controls are experimental inputs for
which a known result is expected, while negative controls
represent null inputs for which no result is expected. Re-
producible data science analyses should include positive
controls, or unit tests, that consist of defined inputs for
which a particular output or result is expected. Simi-
larly, negative controls, in the context of data science,

generally represent null unit tests inputs for which no
interesting result is expected. If an analysis finds so-
mething significant for randomized data, one should be
suspicious. Controls, both positive and negative, should
always be included and checked automatically at each
stage of a study intended to be reproducible.

Electronic vs Protocol reproducibility: electronic
reproducibility refers to activities that a computer can
carry out automatically. Examples include checking as-
sertions, control results, or unit tests, storing documen-
tation or data in a particular repository, or managing
revision control history for an analysis workflow. Proto-
col reproducibility, instead, refers to things that needs to
be carried out by a human, such as proper experiment
design, consistent naming schemes, and writing enough
documentation.

Data Provenance

Data provenance for reproducible research, can be con-
sidered in three phases: the past (Where did your data
come from?), present (What did you do with it?), and
future (Where is it going to live after you publish it?).
We start by discussing project design. This includes
best practices to choose and record the origins of data,
defining formats, and properly documenting this infor-
mation. Data provenance can be assisted by electronic
aids, such as computational project lay out, scientific
workflow systems, electronic lab notebooks, and stan-
dards for file naming and recording. Most journals and
funding agencies now require some form of public da-
ta deposition at the time of manuscript submission, and
often an open access requirement, allowing others to free-
ly obtain the data. Towards achieving these goals, one
might want to keep in mind the following points:

• Maintain contact information with data generators

• Store well-annotated backed-up copies of the data
in standardized locations.

• Understanding the strength and weaknesses of da-
ta generating technologies. For instance, for single-
cell transcriptomics, one might expect a lot of noise

due to very low input material amounts, and a lot
of sparsity.

• Maintain electronic records indicating how data ha-
ve been processed, where the files are, and how each
file relates to others.

Scientific workflows are great facilitators. In general, a
scientific workflow system captures the provenance of da-
ta transformations in a standardized format. This in-
cludes some combination of the data products themsel-
ves, associated provenance metadata, and the transfor-
mations between them (e.g. scripts, executable depen-
dencies, cloud services, web services, or even manual pro-
cesses in graphical environments). The choice of environ-
ments along the spectrum depends on the cost benefit of
how much time can be invested into infrastructure ver-
sus what the importance or effort of redoing the work
later might be. At the lightest-weight end of the work-
flow spectrum, one can assemble simple workflows in an
imperative, non dependency driven, way by centralizing
important analysis tasks in a single driver script. In the
simplest of cases, the basic rule is that rather than run-
ning commands by hand on the command line, writing
them into a single driver script is better. A better step
up, however, is to use a dependency driven framework
as a minimal scientific workflow environment. These will
not typically track data provenance explicitly, but they
will track data transformations, parameters, and they
store all the analyses that have been running, greatly en-
hancing reproducibility. At the heaviest-weight end of
the scale, formal scientific workflow environments typi-
cally provide a graphical interface for editing data tran-
sformation tasks, import and export of workflow, stan-
dardized formats, and task dispatch to a variety of exe-
cution engines that might be either local, grid, or cloud
based. Common examples in this family include Kepler,
Taverna, Arvados, Cromwell, Ergatis, Galaxy, and many
others.
We finally discuss data security and privacy. First, the
definitions.

• Privacy: the need to segregate sensitive data
during research.

• Security: the need to ensure that only authorized
users can access data.

Soel Micheletti

The data necessary to reproduce a study might include
sensitive data, such as medical history. Funding agencies
typically provide data usage guidelines that balance the
reproducibility needs of the research community, with re-
spect for human subjects and protection of research pro-
ducts. In any case, these data must be specially protec-
ted by the researcher and shared only with other users
authorized for research purposes. A typical technique
consists in masking the unique identifiers that could be
traced back to an associated human subject. Anonymi-
zation of such records is one step that can protect them
during research, referring to any method of manipula-
ting the data set that masks these unique identifiers or
prevents them from being correctly linked to their asso-
ciated medical records. Even then, an anonymized data
set may still be sensitive enough to require special hand-
ling, and the original data set certainly does, leading to
the need for data security mechanisms. Data security
mechanisms include the physical security of paper do-
cuments, limiting researchers or other individuals who
have access to the files, and actively preventing social
engineering attacks or intrusion attempts. Private data
and the security process should not impede reproducibi-
lity, although they certainly create additional challenges.
Some research can only be carried out using extremely
sensitive information, however. Such data sets are typi-
cally only released to other researchers under very limited
conditions, such as allowing re-analysis only through an
entirely network disconnected hard drive or computer.
Carried out correctly, best practices for sensitive data
handling can allow reproducible research to be executed
without risk to participants or others.

Computational Tools

Reproducibility concerns three aspects: code, data, and
report generation.

• Version control: tools to keep track of changes,
edits, and collaborations to code. The primary
example is git, alternatives are mercurial and sub-
version. Features of git allow one to easily track
changes to the code among many collaborators. To
take the most recent version of code on the server
one uses git pull, to update the changes one uses

git push (either using merge or rebase if in the
meantime someone else pushed to the server repo-
sitory), and to develop more complex features that
are tested independently one uses branches.

• Data management: crucial questions are What
type of data need to be collected?, What is the struc-
ture of the data?, What format is my community
using?, Where will the data be stored?, How will I
share the data?, Is there any sensitive information
that needs to be protected? In a word, data should
be managed according to a set of best practices
known as FAIR: Findable, Accessible, Interopera-
ble, Reusable. In particular, one should document
all transformations that have been applied to the
data in a notebook or a markdown file. In 2014, a
group of researchers at Harvard University publi-
shed a set of ten rules for the care and feeding of
scientific data:

1. Love your data, and help others love it, too.

2. Share your data online, with a persistent or
permanent identifier.

3. Conduct science with a particular level of
reuse in mind.

4. Publish workflow as context.

5. Link your data to your publications as often
as possible.

6. Publish your code (even the small bits).

7. State how you want to get credit.

8. Foster and use data repositories.

9. Reward colleagues who share their data
properly.

10. Be a booster for Data Science.

Useulf tools include the Harvard Dataverse, the
Open Science Framework (OSF), Zenodo, figshare,
and Dryad.

• Literate programming: programming paradigm
introduced by Donald Knuth in which a computer
program is given as an explanation of how it works
in a natural language, interspersed with snippets
of macros and traditional source code, from which

compilable source code can be generated. Typical
tools used include R Markdowns, knitr (that allow
to generate PDF or document file out of the mar-
kdown and allows to combine multiple program-
ming languages in the same notebook), and Jupyter
notebook.

Statistical Methods

Validating the predicting performance of a Machine Lear-
ning model is a fundamental task in Data Science. In
this chapter, we study statistical methods for reproduci-
ble Data Science. Note that these methods are not just
applicable in the classical setting where we have a trai-
ning and a validation data set sampled from a common
distribution, but also when we have multiple heteroge-
neous data sets as depicted below. When we use diffe-
rent datasets for validation, we use the term cross study
validation.

Studying the matrix above can be very informative. In
fact, one could cluster the datasets (where the distance
between each pair of dataset is given by the correspon-
ding entry in the above matrix), and understand under
what condition an algorithm performs well/ poorly.

More generally, we study the following setting. (X,Y) ∼
P, and we use a method M(X) to predict P. Note that
in general we don’t observe P, but we have n i.i.d. sam-
ples (X1, Y1), . . . , (Xn, Yn). A measure Z : (M,P) eva-
luates the prediction quality obtained via M . Note that

Soel Micheletti

the crucial assumption to achieve external validity when
estimating Z is that the method M has not been trained
on the same data used for validation. Some of the most
popular validation metrics are summarised below:

• Coefficient of determination (typically for
linear regression models):

R2 = 1−
E
[
(Y −M(X))2

]
V ar [Y]

∈ [0, 1]

which can be estimated as

R̂2 = 1−
1
n

∑n
i=1(M(Xi)− Yi)

2

1
n (Yi − Ȳ)2

∈ [0, 1]

• Brier score (for binary prediction pro-
blems):

Z(M,P) = E
[
(Y −M(X))2

]
which can be estimated as

Ẑ(M,P) = Z(M, P̂) =
1

n

n∑
i=1

(M(Xi)− Yi)
2

• AUROC (for binary prediction problems):
Computed numerically as the area under the re-
ceiving operating characteristic curve (ROC). The
x-axis on the curve correspond to the FPR, whi-
le the y-axis is the TPR. Every point in the ROC
curve corresponds to a score for a certain threshold
τ . Usually, the different thresholds are picked from
the predicted scores (every score correspond to a
threshold). For each τ , we classify each score ≤ τ
to 0, and to 1 otherwise.

Bootstrapping is any test or metric that relies on ran-
dom sampling with replacement. Bootstrapping allows
assigning measures of accuracy (defined in terms of bias,
variance, confidence intervals, prediction error or some
other such measure) to sample estimates. Bootstrapping
is the practice of estimating properties of an estimator
(such as its variance) by measuring those properties when
sampling from an approximating distribution. One stan-
dard choice for an approximating distribution is the em-
pirical distribution function of the observed data. In the

case where a set of observations can be assumed to be
from an independent and identically distributed popula-
tion, this can be implemented by constructing a number
of resamples with replacement, of the observed dataset
(and of equal size to the observed dataset). The typical
way to proceed is the following:

1. Replace P with another distribution Q = P̂.

2. For B iterations, simulate i.i.d. data from Q (typi-
cally by sampling with replacement from the data-
set). Then compute the Z score for the simulated
data.

3. Use the B computed scores to make inference about
Z(M,P) (e.g. its variance, standard deviation, or
confidence intervals).

Survival analysis: a statistical procedure for data ana-
lysis in which the outcome variable of interest is the time
until an event occurs. Survival analysis has three goals
to be addressed:

1. To estimate and interpret survivor and/or, hazard
functions from survival data

2. To compare survivor and/or, hazard function

3. To assess the relationship of explanatory variables
to survival time

A typical estimator are Kaplan-Meier curves. Let τ ≥ 0
be a random variable, which we think of as the time until
an event of interest takes place. The goal is to estimate
the survival function S underlying τ . This function is
defined as

S(t) = Pr [τ > t]

Let τ1, . . . , τn be i.i.d. random variables, whose com-
mon distribution is that of τ : τj , i.e. the random time
when some event j happened. The data available for
estimating S is not (τj)j=1,...,n, but rather the list of
pairs ((τ̃j , cj))j=1,...,n where for j ∈ [n], cj ≥ 0 is a fixed,
deterministic integer, the censoring time of event j and
τ̃j := min(τj , cj). In particular, the information avai-
lable about the timing of event j is whether the event
happened before the fixed time cj and if so, then the ac-
tual time of the event is also available. The challenge

is to estimate S(t) given this data. Note that if ck ≥ t,
then Pr [τk ≥ t] = Pr [τ̃k ≥ t]. This observation yields a
natural estimator for S(t):

Ŝt =
|k : τ̃k ≥ t|
|k : ck ≥ t|

Patient stratification: in clinical research, stratifica-
tion has three different meanings.

1. Description of the natural distribution of patien-
ts into subgroups, for instance patients may be
stratified by stage.

2. Stratification can refer to the process of control-
ling the random allocation of the treatments in
a clinical trial (for instance the randomisation
can be stratified on stage) in order to control for
confounders.

3. Stratification of a trial analysis consists into ta-
king into account patients’ characteristics in the
analysis.

An example is risk stratification. Risk stratification is
the process of assigning a health risk status to a patient,
and using the patient’s risk status to direct and improve
care. Said otherwise, risk stratification helps healthcare
providers tailor their patient engagement and care ma-
nagement efforts to individual populations with varying
healthcare needs.

Soel Micheletti

