SYSTEMS PROGRAMMING

SOME PRELIMINARY FACTS ABOUT C

e file.c

C preprocessor (cpp) introduce all file marked with
and turns into file.i.

Compiler generates file.s.

Assembler generates file.o.

Linker merges object files in a single executable file.

Executable file.

Suppose we write a C program as two files pl.c and p2.c.
We compile with:

unix> gcc -01 -o p pl.c p2.c
e Invoking gcec invokes the Goc C compiler.

e -(O1I indicates level one optimization. In general,
increasing the level of optimization makes the fi-
nal program run faster, but at a risk of increased
compilation time and difficulties running debugging
tools on the code.

If we write
unix> gcc -01 -S code.c

we don’t compile, we just get the .s file.
Instead if we write:

unix> gcc -01 -c code.c

we bot compile and generate the .o file.

Type Size (in by-

char 1
short 2
int 4
float 4
double 8
long 8

#include <stdint.h>

int8_t a; |

intle_t b; Signed integers,
int32_t c; precise size in bits
int64_t d;

uint8_t x5 |7

uintle t Y

uin‘t32_t z; L Unsigned integers,
uint64_t w;

int a[3][3];

[elelefJoe|efele[e]eo|
afe][e] a[1]{e] .. a[1][2] a[2][2]

int a = 1;
for (i=0; i < 3; i++) .’
for (j=0; j < 3; j++)
matrix[i][j] = a++;

[1l2]3]a]sfef7]8]09]

int a = 1; ?
for (i=0; i < 3; i++)
for (j=0; j < 3; j++)
matrix[j][1] = a++;

[1laf7]2]s5]8]3]6]9]

LEFT SHIFT: fill with zeros on the right.

LOGICAL RIGHT SHIFT: fill with zeros on the left.
ARITHMETICAL RIGHT SHIFT: replicate most significant
bit on the left.

Integers in C can be represented in two ways:

e Unsigned: Y ! jz; -2
e Signed: —z, - 2" + Z;:Ol x; - 2
Some useful rules to remember are:

e Casting between signed and unsigned: bit pattern
is maintained but reinterpreted.

e Expression containing signed and unsigned: cast to
unsigned.

o r=vz+1

The OS gives each process an address space, which con-
tains virtual memory. When the OS loads a program it
creates an address space, it inspects the executable file
to see what’s in it and it lazily copies regions of the file
into the right place in the address file.

OXFEFFFFFT - Memory
Kernel virtual memory . .
oxc inaccessible to
User stack user code
(created at runtime) .
tack pointer
1
t
Memory-mapped region for
shared libraries
I brk
Run-time heap
(created by malloc)
Read/write segment Loaded
(.data, .bss) from
the
Read-only segment executable
(.init, .text, .rodata) file
Unused

Pointers are a very useful feature in C: they save the
address of another variable (i.e. they point to another
variable).

So far memory is allocated statically (e.g. the counter
is allocated when the program is loaded and is dealloca-
ted when program exits) and variables are automatically
allocated. Sometimes we want memory which persists
across multiple function calls, but not for the whole life-
time of the program. This kind of memory may be too
big to fit on the stack and hence is allocated when expli-
citly requested by the programmer with commands such
as malloc (creates a block of desired size and returns a
pointer to it or NULL of failure), calloc (same as malloc,
but sets the memory to zero) and must be freed with the
free command.

Two important commands (used for example to
implement exceptions) are:

e setjmp(env): saves the current stack environment
in env; returns 0.

Soel Micheletti

e longjmp(env, val): causes a return to the point
saved by env; this time the point where there is env
returns val.

IMPLEMENTING DYNAMIC MEMORY
ALLOCATION

Memory allocators can be explicit (e.g. malloc() and
free () in C) or implicit (e.g. Java, where freeing is
done by a garbage collector.

Explicit allocation

After here object Before here
must be object cannot be
allocated freed
I I Time
a = malloc(s) f(a) free(a)
+ EgC, C++

« All operations appear in the program source

Garbage-collected

After here object Before here
must be object cannot be

allocated
i * I Time

a = new(C) f(a) abecomes garbage
unreachable collector
runs; a freed

« E.g. Java, ML, Lisp, Python
« Explicit allocation, implicit deallocation

When implementing memory allocation we have two
performance goals:

e Throughput: number of completed requests per
unit of time.

e Peak memory utilization: maximize the ra-
tio between the highest aggregate payload and the
current heap size.

e Those goals are often conflicting.

Poor memory utilization can be cause by fragmentation,
which comes in two ways:

e External fragmentation: there is enough aggre-
gate heap memory, but no single free block is large
enough. This means that in a book there are some
free pages and, if you sum them, there is enough
space for what you want to write but, if you want
to write sequentially, there is no enough space.

e Internal fragmentation: for a given block we
have payload | block size (for example because of
padding for alignment purposes). This means that
in a page of a book we have written only half of the

page.

To keep track of free blocks there are several techniques:

e Implicit free list: for each block, at the begin-
ning, we save the length of the free space and whe-
ther is allocated or not (with a flag bit). When we
want to find a free block we can either use next fit
(when you find a free spot large enough, use it) or
best fit (scan the whole list and pick the best spot).
We can also use coalescing: if we free a block and
the previous/ next block is also free, we join them.

o Explicit free list: we use an explicit list among
the free blocks using pointers.

e Segregated free list: different free lists for

different size classes.

e Blocks sorted by size: can use a balanced tree
with pointers within each free block.

FLOATING POINT

Fractional binary numbers: with this form you can’t
express every number; multiplication/ division are easy
(simply shift to the left/ right).

by by ees by by by by by by ..o b

-~
—
=l ..

1/8

Floating point: 1 sign bit; exp exponent bits; M man-
tissa bits. Examples: floating points (32 bits, 8 bits expo-
nent, 23 bits mantissa); double (64 bits, 11 bits exponent,
52 bits mantissa).

e exp = 1...1, frac = 0...0: infinity

e cxp=1..1, frac # 0...0: NaN

e exp = 0.0 (denormalized values): E=-
Bias+1, where Bias=2°"! — 1, M=0.mantissa bits;
number=(—1)* - M - 2F

e cxp # 0..0 and exp # 1...1 (normalized values):
E=exp-bias, where bias=2¢"1 — 1; M=1.mantissa
bits; number=(—1)* - M - 2¥

X86

The ISA is the parts of a processor design that one needs
to understand to write assembly code. The microarchi-
tecture is the concrete implementation of the ISA in the
hardware. Here we summarizing 64-bit x86.

Soel Micheletti

CPU Memory

Addresses
Registers Object Code
PC D

ata Program Data

Condition Instructions | °° P33
Codes

Programmer-Visible State Stack
= PC: Program counter
= Address of next instruction
= Called “RIP" (x86-64)
= Register file
= Heavily used program data
= Condition codes

= Store status information about
most recent arithmetic
operation

= Used for conditional branching

Memory
= Byte addressable array
= Code, user data, (some) OS
lata

= Includes stack used to
support procedures

Let’s take a look at an example program:

C code Generated x86 assembly
int sum(int x, int y) sum:
{ pushq %rbp
int t = x+y; movq %rsp, %rbp
return t; movl %edi, -20(%rbp)
} movl %esi, -24(%rbp)
movl -24(%rbp), %eax
movl -20(%rbp), %edx

addl %edx, %eax
movl %eax, -4(%rbp)

Obtain with command movl -4(%rbp), %eax
gcc -0 -S code.c popq %rbp
ret

Produces file code. s

Some compilers use single instruction
“leave”

Systems Programming

This example is useful to illustrate how procedures calls
work:

A procedure call involves passing both data (in the form
of procedure parameters and return values) and control
from one part of a program to another. In addition, it
must allocate space for the local variables of the proce-
dure on entry and deallocate them on exit. Most machi-
nes, including TA32, provide only simple instructions for
transferring control to and from procedures. The pas-
sing of data and the allocation and deallocation of local
variables is handled by manipulating the program stack.

Figure 3.2 Stack “bottom”
Stack frame structure. The
stack s used for passing
arguments, for storing
return information, for
saving registers, and for
local storage.

Earlier frames.

Increasing
address

+4+4an| Argumentn

Caller's frame

+8| Argument 1

+4[Return address

Frame pointer %
AN Saved Yiebp

Saved registers,
local variables,

temporaries - Current frame

Argument
build area

Stack pointer
Yesp

Stack “top”

When a method is called the internal command call pu-
shes the return address (i.e. the address of the caller +
4) in the stack. Afterwards there is a jump to the begin-
ning of the new procedure. The first instruction pushg %
rbp pushes the base pointer (i.e. the address where the
previous function begins) into the stack. The following
instruction movq %rsp, %rbp saves the stack pointer in-
to the base pointer, such that the next function that will
be called will save this address in the stack. In such a
manner we have a linked list of the beginning addres-
ses of all functions. After the procedure is over there is
a command popq %rbp which takes the value where the
stack pointer is pointing to (i.e. the base pointer of the
previous function) and update the base pointer with this
value (in facts, we are leaving the procedure and hence
the next procedure that will be called will need to have
the right version of the base pointer). Afterwards the in-
struction ret pops the return address from the stack and
jumps to this address.

Structures are contiguously-allocated regions of memo-
ry and contains different elements of different types. The
elements are aligned depending on the type (e.g. char
1 byte, short 2 byte, int and float 4 bytes, double and
pointers 8 bytes).

Satisfying alignment with structures

struct S1 {

char c;
= Example ' int i[2];
(under Windows or x86-64): double v;

= K =8, due to double element T *ps

[c] [ife] T i[a] T | v]

p+0 p+4 p+8 p+16 p+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

OPTIMIZING COMPILERS

The compiler is your friend!

The efficiency of a program goes beyond the asymptotic
complexity of the algorithm. A lot of other factors are
involved:

e Constants (n # 100n).

e Coding style (unnecessary procedure calls, unrol-
ling, reordering).

e Algorithm structure (locality, instruction level
parallelism).

e Data representation.

Hence we have to optimize at multiple levels in order to
be efficient (e.g. algorithm, data representation, proce-
dures, loops). Compilers can help you to optimize your
code in order to run faster on the machine. For example
in gcc there are several different compiler flags which gi-
ves you different performances (from O1 to O3 you can
pass from 200 to 30 cycles).

Some important things to remember about compilers:

e Compilers are good at mapping program to a
machine. For example register allocation, co-
de selection and ordering, dead code elimination,
eliminating minor inefliciencies.

e Compilers are not good at improving asymptotic
efficiency and at overcoming ”optimization bloc-
kers” (e.g. potential memory aliasing, potential
procedure side-effects).

Soel Micheletti

e If in doubt, the compiler is conservative!

Now, let’s take a look to some examples of compiler
behaviours.
Code motion

void set_row(double *a, double *b,
long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[jl;
}
long 3;
int ni = n*i;
for (3 = 0; j < n; j++)
a[ni+j] = b[jl;

Strength reduction 16x — x << 4

Common subexpressions: reuse portions of ex-
pressions in order to reduce the complexity of the
computations.

An example where you have to help the compiler is the
following:

void lower(char *s)
{
int i;
for (1 = 0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ("A" - "a");
¥

This loop is O(n?) because the strlen function takes li-
near time on the size of the input. A natural thing to
do in this case would be to save the length of the input
before entering the loop, but the compiler will not do
this kind of optimization in this case. In facts, the strien
function might have side effects and hence the compiler
can not do this kind of code motion. In general, the com-
piler threats procedure calls as black boxes that can not
be analysed. We have to help the compiler to help us!

ARCHITECTURE

The programmer assumes that his program is translated
in a sequence of instruction and that those instructions
are executed in order one after the other. In practice
things are a little bit different. A first important obser-
vation is that instructions can be decomposed in micro
instructions. For example:

e FETCH

e DECODE

e EXECUTE

e MEMORY STAGE

e WRITE BACK

This allows to pipeline instructions (i.e. one instruction
is in the fetch stage while another one is in the execute
stage). Other tricks used to improve performance are:

e Out of order execution: data dependencies li-
mit the performance of a program. For example
if instruction 2 depends on instruction 1, but in-
struction 3 is independent of both other instruc-
tions, then the order 1-3-2 would be more conve-
nient. Out of order execution is useful in those
cases: instructions are executed out of order and
then reordered with Tomasulo Algorithm.

e Superscalar processors: it is possible to do more
operations at the same time (e.g. more additions,
load or stores at the same time).

e Branch predictor: when there are branches (e.g.
if statements), the program doesn’t know what will
be the next instruction. Branch predictors are me-
thods to predict which instruction will be the next
one. When branch predictors are used the compu-
ter begins to execute the possible next instruction
speculatively. If the guess was right there is a bet-
ter performance, otherwise there will be a penalty
time to undo the wrong instruction.

Some other important concepts in computer architecture
are:

e Frequency of the processor (usually in GHz):
number of cycles every second.

e Latency: time to execute an instruction.

e Throughput: number of instructions executed
every second when the pipeline is fully operative.

e Time to execute operations on array: n - CPE +
overhead.

EXCEPTIONS

Processors do only one thing: from startup to shutdown,
a CPU simply reads and executes a sequence of instruc-
tions, one at a time. This sequence is the CPU’s con-
trol flow. Up to now we can change the control flow with
jumps and function’s call/ return. However there are mo-
re events in which the control flow should be modified,
e.g. division by zero, user hits Ctrl-C, ... This means that
the system needs mechanisms for exceptional control
flow.

An exception is a transfer of control to the OS in
response to some event.

User Process 0s

event —— |_current l exception

I_next

exception processing
by exception handler

* return to I_current
e return to |_next
*abort

Each type of event has an exception number k, which
is an index into the exception table. If exception k oc-
curs, the code pointer by the k-th entry in the exception
table is executed. When an exception occurs, there is
a switch from user-mode to kernel-mode. There are
several possibilities of the consequences of an exception.
Imagine that we are executing an instruction curr and
than the exception occurs. It is possible that, after the
exception handler has finished its job, we resume from

Soel Micheletti

the instruction which comes after curr, or we do the in-
struction curr again or that it is impossible to resume
after the exception and hence we have an abort.

There are two main types of exceptions:

e Synchronous exceptions: caused by events that
occur as result of executing an instruction.

— Traps: system calls, breakpoints, ... Returns
control to next instruction.

— Faults: unintentional, but possibly recove-
rable. Examples are page faults, protec-
tion faults, floating point exceptions. Ei-
ther re-execution of faulting instruction or
abortion.

— Aborts: unintentional and unrecoverable, e.g.
machine check.

e Asynchronous exceptions: cause by events ex-
ternal to the processor. Some examples are 1/O
interrupts (Ctrl-C,arrival of a packet from the
network, arrival of data from a disk) and reset
interrupts.

CACHES

Problem: Processor-memory bottleneck

Processor performance

doubled about .
every 18 months Bus bandwidth
evolved much slower

Main
cPU | Reg
> Memory

Intel Haswell: Intel Haswell:
Can process at least Bandwidth
512 Bytes/cycle 10 Bytes/cycle
(1 SSE two operand add and mult) Latency

100 cycles

Solution: Caches

The memory of a computer is organized in a hierarchi-
cal way. The general rule is: smaller means faster.
On the top of the hierarchy there are the registers (very
small and very fast), then there are the caches (of diffe-
rent sizes, but should be a lot faster than memory, use
SRAM technology), then there is the main memory and
then the disk (which use DRAM technology).

L1/12/13 cache: 64 B blocks Not drawn to scale

~256kB ~8 MB ~16 GB ~300 GB

L1
I-cache
3

2 unified Main
32Kk cache Memory

cache
L1
e D-cache
SSD

Thrpt: ~81B/cycle ~29 B/cycle ~18B/cycle ~10B/cycle 1B/10 cycles
Latency: 4 cycles 12 cycles 44 cycles 80 cycles millions

The principle of the memory hierarchy is to take advan-
tage of locality to improve performance: when data in
block b is needed, we first check, whether b is in the ca-
che. If b is in the cache we are over and we saved the
time to search b in lower (and slower) level. Otherwise
we spend some time to take b from one of the lower le-
vels and then we save b in the cache. In facts, if we think
that we are going to need b also in the close future, ha-
ving b cached will save query time for the next time we
will need it. The placement policy determines where
in the cache the block will be stored. But what do we do
if we want to save b in the cache but the slot designed by
the placement policy is occupied? What if the cache is
completely full? We need a replacement policy which
determines which block gets evicted.

Caches improve performance because we exploit two kind
of localities:

e Temporal locality: recently referenced items are
likely to be referenced in the near future (example,
the 4 variable of a for loop).

e Spatial locality: items with nearby addresses
tend to be referenced close together in time (e.g.
sequential array access).

When we talk about caches it is useful to do some
performance considerations:

e Miss rate: 2255 — 1 _ hit rate
accesses

e Hit time: time to deliver a line in the cache to
the processor (e.g. 1-2 cycles for L1, 5-20 cycles for
L2).

e Miss penalty: additional time required because
of a miss (e.g. 50-200 cycles for main memory, but
this number tends to increase).

Cache misses can be of different types:

e Cold (compulsory) misses: occurs on first

access to a block.

e Conflict miss: place in the cache where the block
should go is occupied. Cache may be large enough,
but multiple lines map to the same slot.

e Capacity miss: set of active cache blocks is larger
than the cache.

e Coherency miss:
systems.

occurs on multiprocessors

General cache organization

(Sy E! B) E = 2¢ lines per set
7 N set
[l i Jooeef)-I\
|\ I Jejsiead || line or block
S=2¢sets |[I Jeoos! ||
seecccecsescccscccccccsccccne
I | loeeef 1
Cache size:
[Cee | [olal2]-] S x E x B data bytes
valid bit B = 2° bytes per cache block (the data)
* Locate set
* Check if any line in set
Cache read E = 2¢ lines per set has matching tag
~ A ~ * Yes + line valid: hit
* Locate data starting
[—E— E— atoffet
Address of word:
[l [Jeeed| || b T s Tomm]
s=2sets4 || | Joeee]]| T e
index offset
eeeccesccesccscccsccccscce
I | Joeee] I}—‘
I data begins at this offset
DEBE=m]
valid bit S —

B = 2° bytes per cache block (the data)

Writes are more involved and we have different possible
designs:

e Write-hit:

Soel Micheletti

— Write-through: write immediately to memory,
such that memory is always consistent to the
cache copy. This can be slow if the same line
is written several times.

— Write-back: defer write to memory. This
needs a dirty bit in the cache to show that
the copy is not consistent with memory. This
can improve the performance but it is more
complex.

e Write-miss:

— Write-allocate: load into the cache, update
line in the cache. Common with write-back
caches.

— No-write-allocate: ~ writes immediately to
memory. Seen with write-through caches.

If we have a direct mapped cache and we have a write
miss there is only one line to evict. However, in case of
associative caches we have to choice which block to evict.
There are several strategies:

e Random
e LFU: evict the block used less frequently.

e LRU: evict the block used less recently.

When we design a cache we have to take several choices,
let’s see some trade-offs:

e LFU and LRU need a more involved hardware
structure and hence introduce some overhead: we
choose this policy replacement for low level of
caches (i.e. where miss have a big cost).

e Cache size: if bigger we have a better hit rate, but
also a higher latency to find the data.

e Block size: if we have big blocks we advantage pro-
grams with a good spatial locality. However, if we
considered a cache with fixed size, we have less ca-
che lines and this is bad for programs with a good
temporal locality. Moreover size of the block and
miss penalty are proportional.

e Associativity: high associativity means less conflict
misses. However the cost of the replacement policy
is high and hence the miss penalty gets bigger.

MEMORY

Programs refer to virtual memory addresses in order to
provide a good abstraction for programmers. Concep-
tually it is possible to think to memory as a very large
array of bytes, where each byte has it own address. This
is only an approximation which is far from reality: me-
mory is not homogeneous (there are several layers with
different access times) and is not true that every process
has its own private large memory. In reality the OS gi-
ves this illusion by mapping virtual addresses to physical
memory.

Each process gets its own private memory space

Virtual memory

Process 1

Physical memory

: mapping

Virtual memory

Process n

When we consider the mapping between virtual and
physical addresses we have to consider that:

e Each object can have multiple addresses.

e Every byte in main memory can be considered
as one physical address or one (or more) virtual
addresses.

Some simple systems like elevators still use physical ad-
dressing, but in general all modern devices (laptops, de-
sktops...) use systems with virtual addressing. A basic
principle is the following: in memory there is a page table
which acts as a translation table between virtual pages
and virtual pages.

Address translation with a page table

Virtual address
Page table
base register —1_Virtual page number (VPN) | Virtual page offset (vPO) |
(PTBR)
Page table address Page table
for process Valid __ Physical page number (PPN)
—
Valid bit = 0:
page not in memory €———————
(page fault)
Physical page number (PPN) | Physical page offset (PPO) |
Physical address

The following are some advantages of virtual memory:

e Efficient use of limited main memory (RAM). RAM
is a cache for the parts of a virtual address space:
some parts are cached in RAM, some are located
on disk. Both the RAM and the disk are DRAM
memories, but RAM is a lot faster.

e Simplifies memory management for programmers.
Each process gets the same full, private linear
address space.

Key idea:
each process has its own
virtual address space
= Views memory as a simple
linear array
= Mapping function scatters
addresses through physical
memory
= Well-chosen mappings simplify
memory allocation and
management

(e.g. read-only
library code)

e Isolates address spaces. It is possible that two vir-
tual addresses of two different processes map to the
same memory location. In order to protect the pro-
cesses from problems (e.g. race conditions), there
are permission bits to regulate their interaction.

Let’s take a look at the address translation process in
case of a page hit:

Soel Micheletti

Address translation: page hit

CPU Chip PTEA
vt PTE
cru MU (2] Cache/
PA Memory
Data

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

And in case of a page fault:

Address translation: page fault

Exception
=== 6 ----- Page fault handler

CPU Chip o PTEA Victim page
U VA MMU PTE Cache/ Disk
o o Memory
New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

In order to speed up the translation we can use a TLB.
We send the virtual address to the MMU which, instead
of looking directly in the memory in order to translate,
looks in the TLB: a cache for the virtual/ physical ad-
dress translation. If the physical address corresponding
to the requested virtual address is located in the TLB we
save a memory access. If we have a miss we do the trans-
lation as before with access to the memory and we work
with TLB in the same way we would do with a normal
cache.

Translating with a k-level page table

Virtual Address
n-1 pl 0

,ven1 [, venz | veNk | vPo

Level 2 Level k
page table page table

7 5

[PPN [pro]

Level 1
page table

Physical Address

Core i7 memory system*

T L2, L3, and
*A bit simplified L1 hit L1 miss
L1 d-cache

TLB (64 sets, 8 lines/set)
[T T T T 1T T j&eq
hit T T T T 1T T e
CI T 1T 1T 1T 1T 1 e

entries/set) —I

] = [[ofo

[penTerro

Physical
address (PA)

Pane tahles

MULTICORE

One processor isn’t fast enough and some jobs can paral-
lelize. A solution is attaching multiple processors to the
system bus.

CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
= —
ﬁ SMP only works because of
caches!
RAM « Shared memory rapidly
becomes bottleneck

Having more than one core is now crucial since some walls
have been hit:

e The memory wall

e The ILP wall

The power wall

Moore’s law is not respected anymore

e Processor cores can’t get any faster

Clock frequencies are going down

For this reasons nowadays we use multiple processors per
chip. Mostly so far the multiprocessors share memory.
Two key challenges are:

e Coherency: values in cache all match each other;
processors all see a coherent view of memory.

e Consistency: the order in which changes to
memory are seen by different processors.

Two important concepts are program order (i.e. order
in which a program on a processor appears to issue read
and writes) and visibility order (order which all reads
and writes are seen by one or more processors, refers to
all operations in the machine).

On modern machines most CPU cores are cache cohe-
rent which means they behave as if they were all acces-
sing a single memory array. This makes programming
easier but is hard to implement and memory is slower as
a result.

An important property is sequential consistency, i.e. ope-
rations from each processor appear in program order and
every processor’s visibility order us the same interleaving
of all the program orders. In order to achieve sequential
consistency we can use a snoopy cache (the cache snoops
on read/ writes of other processors and, if a line is valid in
another cache, the local line of the snooping processor ge-
ts invalidated. This works for write-through caches, but
for write-back caches we need a more advanced protocol.

Soel Micheletti

MSI state machine: all transitions

Local
write miss

Local
read miss

Eviction
= write back block
Remote write miss
= write back block

Modified I

:
Remote write miss or write

Cache write back
Remote read miss
= write back block

Remote
read miss

MESI state machine

Terminology:

+ PrRd: processor read
* PrWr: processor write
* BusRd: bus read

+ BusRdX: bus read excl
* BusWr: bus write

PrRd —
No transaction|

BusRd —
Signal HIT

\:l Processor-initiated

\:l Snoop-initiated

INo transaction|

SOME INTERESTING THINGS

e Pass by value: the caller and callee have two in-
dependent variables with the same value. If the
callee modifies the parameter variable, the effect is
not visible to the caller.

e Pass by reference: the caller and the callee use
the same variable for the parameter. If the callee
modifies the parameter variable, the effect is visible
to the caller’s variable.

A worm is a program that can run by itself and can
propagate a fully working version of itself to other com-
puters. A virus adds itself to other programs and cannot
run independently. A very famous example is the buffer
overflow attack. When a function is called, its return
address is pushed in the stack. Then the function is cal-
led and, very often it allocates space on the stack. If
the function uses some not carefully implemented input

function (which takes data from example from the user
keyboard), the following scenario can happen: the input
of the keyboard is saved in the stack, but if the input is
too big and the system is not carefully designed, it can
happen than the input overwrites some memory in the
stack which it should not overwrite. A malicious user
could for example overwrite the return address (which is
also saved in the stack) such that the return address is
the one of a malicious function which does whatever the
user wants!

Soel Micheletti

x86-64 Reference Sheet (GNU assembler format)

Instructions

Data movement

movq Src, Dest
movsbgq Src,Dest
movzbq Src,Dest

Dest = Src

Dest (quad) = Src (byte), sign-extend
Dest (quad) = Src (byte), zero-extend

Conditional move

cmove Src, Dest
cmovne Src, Dest
cmovs Src, Dest
cmovns Src, Dest
cmovg Src, Dest
cmovge Src, Dest
cmovl Src, Dest
cmovle Src, Dest
cmova Src, Dest
cmovae Src, Dest
cmovb Src, Dest
cmovbe Src, Dest

Equal / zero

Not equal / not zero
Negative

Nonnegative

Greater (signed >)

Greater or equal (signed >)

Arithmetic operations

leaq Src, Dest
incq Dest

decq Dest

addq Src, Dest
subq Src, Dest
imulq Src, Dest
xorq Src, Dest

Instruction suffixes

Dest = address of Src b byte

Dest = Dest + 1 w word (2 bytes)
Dest = Dest — 1 1 long (4 bytes)
Dest = Dest + Src q quad (8 bytes)

Dest = Dest — Src
Dest = Dest * Src

Dest — Dest ~ Src Condition codes

Less (signed <)

Less or equal (signed <)
Above (unsigned >)

Above or equal (unsigned >)
Below (unsigned <)

Below or equal (unsigned <)

Control transfer

cmpq Src2, Srcl
testq Src2, Srcl
jmp label

je label

jne label

js label

jns label

jg label

jge label

j1l label

jle label

ja label

jb label
pushq Src
popq Dest

call label
ret

Sets CCs Srcl — Src2

Sets CCs Srcl & Src2

jump

jump equal

jump not equal

jump negative

jump non-negative

jump greater (signed >)

jump greater or equal (signed >)
jump less (signed <)

jump less or equal (signed <)

jump above (unsigned >)

jump below (unsigned <)

Yorsp = %rsp — 8, Mem[%rsp| = Src
Dest = Mem|[%rsp], %rsp = %rsp + 8
push address of next instruction, jmp label
Y%rip = Mem|[%rsp]|, Y%rsp = %rsp + 8

movq 8(%rdi), %rdx

Indexed

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
D: constant displacement 1, 2, or 4 bytes
Rb: base register: any of 8 integer registers
Ri: index register: any, except %esp
S:scale: 1, 2, 4, or 8

movq 0x100(%rcx,%rax,4), %rdx

orq Src, Dest Dest = Dest | Src CF Carry Flag
andq Src, Dest Dest = Dest & Src ZF Zero Flag
negq Dest Dest = — Dest SF Sign Flag
notq Dest Dest = ~ Dest OF Overflow Flag
salq k, Dest Dest = Dest < k
sarq k, Dest Dest = Dest > k (arithmetic) .
shrq k, Dest Dest = Dest > k (logical) Integer registers
. %rax Return value
AddreSSIHg modes %rbx Callee saved
. %rex 4th argument
* Immediate %rdx 3rd argument
Sval Val %rsi 2nd argument
val: constant integer value %rdi st argument
movq $7, krax %rbp Callee saved
Normal %rsp Stack pointer
(R) Mem[Reg[R]] %or8 5th argument
R: register R specifies memory address Vor9 Gth argume.nt
movq (Yrex), Yrax %r10 Scratch register
%rll Scratch register
Displacement %r12 Callee saved
D(R) Mem[Reg[R]+D] %r13 Callee saved
R: register specifies start of memory region %r14 Callee saved
D: constant displacement D specifies offset %rl5 Callee saved

