
Visual Computing

Digital image

An image is a 2D signal, where by signal we mean a func-
tion depending on some variable with physical meaning
(e.g. brightness, temperature, pressure, ...). We can re-
present images as functions R2 → Rn, where we give a
pixel coordinate as input and we get a value as output.
If we use a grayscale representation then we will get an
value in R, if we use RGB a value in R3.
A very important concept when we talk of visual com-
puting is sampling. Sampling in 1D takes a func-
tion and returns a vector whose elements are values
of that function at the sample points. For example if
we do three samples of the function sin(x) we can get

{(0, 0), (π2 , 1), (3π
4 ,
√

2
2)} as collection of vectors. With

sampling we can represent continuous functions in a di-
screte manner, but it is often useful to have some recon-
struction algorithm which, given some samples, approxi-
mates the continuous function. An application of this are
CDs: when we record we sample the sound and we store
it on the disc and in order to do the playback we need a
device which takes the discrete samples on the CDs and
returns the (continuous) sound. Of course, when we go
from a discrete to a continuous world, one needs to guess
what the function did in between. A famous way is to do
bilinear interpolation, i.e. f(x) = (1− a)(1− b)f(i, j) +
a(1−b)f(i+1, j)+abf(i+1, j+1)+b(1−a)f(i, j+1). It
is important to know how many samples to do. In facts
there is a trade-off: doing too less samples implies a bad
representation of the signal, doing too many samples is
inefficient. Undersampling is dangerous because informa-
tion is lost and we loose higher frequencies. An example
of bad consequence of undersampling is aliasing: imagine
that we take a picture of a watch every 55 seconds, one
would have the feeling that the watch is going backwards.
Another important concept is Nyquist-Shannon sam-
pling theorem which states: take the highest frequen-
cy of your signal, sample at least at the double of this
frequency in order not to have an aliasing effect.
When it comes to digital images we also have a problem
of quantization. In facts a signal is a real value, but
this value gets approximated when stored in a digital

devices (which uses a limited number of bits). Quanti-
zation is lossy, i.e. after quantization the original signal
cannot be constructed anymore. This is in contrast to
sampling, because sampled but not quantized signal can
be reconstructed.

Segmentation

We take a first look to the problem of segmentation,
the ultimate problem in computer vision. Segmentation
partitions an image into regions of interest and is the first
stage in many automatic image analysis systems. A first
thing to keep in mind is that the quality of a segmenta-
tion depends on what you want to do with it, hence one
always have to have an application in mind.
A simple segmentation process is thresholding, which la-
bels each pixel as in or out of a region of interest by
comparing the greylevel with a threshold T. Hence we
produce a binary image B with the following rule:

B(x, y) =

{
1 if I(x, y) ≥ T
0 if I(x, y) < T

In order to select a good value of the threshold we can
either use trial and error and then comparing the result
with groundtruth or use automatic methods such as ROC
curves.
ROC curve: characterizes the error trade-off in binary
classification tasks. We plot the TP fraction (sensitivi-
ty) and the FP function (1-specificity). In general any
binary test has four possible outcomes:

True positive False negative
True negative False positive

We define the true positive fraction as:

True positive counts

Total number of positives
=

TP

TP + FN

And the false positive fraction as:

False positive counts

Total number of negatives
=

FP

FP + TN

In a ROC plot we try different thresholds and we draw
the corresponding point in the plane. Every ROC curve

always passes from (0, 0) and (1, 1) (this holds because
by doing an extremely large/ small threshold we can clas-
sify something as always 1 or always 0) and the ROC of
a perfect system touches the point (1, 0). But how do
we choose the threshold? We choose an operating point
by assigning relative costs and values to each outcome.
Then we choose point on the ROC curve with gradient
β defined as:

β =
N

P
· VTN + CFP
VTP + CFN

Thresholding is somehow limited, in facts we can seg-
ment images much better by eye than through threshol-
ding processes. We might improve results by considering
image context. In order to do this we first need to define
what does it mean that two pixels are connected, we ha-
ve two main options: either we consider 4-neighbourhood
connectivity of 8-neighbourhood connectivity. Then we
can do region growing, i.e. we start from a seed point
and we add neighbouring pixels that satisfy the crite-
ria defining the region. We repeat this process until we
can include no more pixels. We have to take two major
decisions:

• Seed selection: point and click seed point; select
a seed region (either by hand or automatically from
a conservative thresholding); multiple seeds.

• Selection criteria: greylevel thresholding; co-
lor or texture information; use mean and standard
deviation of the region.

Another possibility is to use foreground-background
segmentation, i.e. we do something like:

|I − Ibg| > T

where Ibg is the background image and T a threshold.
We note that taking a background image is not easy (be-
cause even the background might not be static because
of lighting changes, wind, clouds, ...) and the image does
not only change because of the objects but there might
also be secondary changes (e.g. the shadow of the ob-
ject we want to segment). A better variant would be to
fit a Gaussian model per pixel and taking into account
statistical properties of the image:

Soel Micheletti

√
(I − Ibg)T Σ−1 (I − Ibg) > T

where Σ is the background pixel appearance covariance
matrix.
Another method to do this kind of classification is the
use of Markov Random Fields. In this case we represent
the picture as a graph where every pixel is a node and we
have edges based on the pixel connectivity (e.g. if we use
4 pixel connectivity our graph is a grid). In this graph
every edge has a label (based on the class of the pixel)
we define a cost function as follows:

• We define the cost of an edge from vi to vj as 0 if
the nodes are in the same class (basically, we want
the classification to be as smooth as possible) and
a constant K if the class is different.

• We define the cost of a node to be inversely pro-
portional to the probability that our classification
is correct.

The goal is to minimize the cost function (because this
would mean that we have classified everything correc-
tly with high probability and that the classification is
smooth. This problem can be solved with a min cut
approach.

Morphological operators

Local pixel transformations for processing region shapes
used mostly on binary images. Logical transformations
based on comparison of pixel neighbourhoods with a pat-
tern. The goals are: smooth region boundaries for shape
analysis; remove noise and artefacts from an imperfect
segmentation; match particular pixel configurations in
an image for simple object recognition.
Morphological operators take two arguments:

• A binary image

• A structuring element

In order to understand what they do we need some basic
definitions:

• S fits I at x if:

{y|y = x+ s, s ∈ S} ⊂ I

• S hits I at x if:

{y|y = x− s, s ∈ S} ∩ I 6= ∅

• S misses I at x if:

{y|y = x− s, s ∈ S} ∩ I = ∅

Erosion:
If S is the structuring element for eight connected nei-
ghbour: Erase any foreground pixel that has one eight
connected neighbour that is background.
The image E = I 	 S is defined as:

E(x) =

{
1 if S fits I at x

0 otherwise

Dilation:
If S is the structuring element for eight connected
neighbour: Paint any background pixel that has one
eight-connected neighbour that is foreground.
The image D = I ⊕ S is defined as:

D(x) =

{
1 if S hits I at x

0 otherwise

Opening:
The opening of I by S is:

I ◦ S = (I 	 S)⊕ S

Small part of foreground become background.
Closing:
The closing of I by S is:

I • S = (I ⊕ S)	 S

Small part of the background become foreground.

Hit-and-miss transform:
H = I⊗S. Searches for an exact match of the structuring
element, simple form of template matching.

Thinning:
I � S = I \ (I ⊗ S)

Soel Micheletti

Thickening:
I � S = I ∪ (I ⊗ S)

Convolution and filtering

Image filtering: modify the pixels in an image based
on some function of a local neighbourhood of the pixels.
We begin with linear shift-invariant filtering, which
is about modifying pixels based on neighbourhood (i.e.
to modify a given pixel we consider only pixel which are
not too far away from the original pixel). Linear means
that we do a linear combinations of neighbours. Shift-
invariant means we do the same operation for every pixel.
In general linear operations can be written as:

I ′(x, y) =
∑

(i,j)∈N(x,y)

K(x, y, i, j)I(i, j)

where:

- I input image

- I’ output image

- K kernel of the operation

- N(m, n) a neighbourhood of (m,n)

It holds that operations are shift-invariant if K does not
depend on (x, y).

Correlation: we apply a kernel to the picture in a
”natural way”, i.e.:

I ′(x, y) =
∑

(i,j)∈N(x,y)

K(i, j)I(x+ i, y + j)

for example:

K(−1,−1)I(x− 1, y − 1) +K(−1, 0)I(x− 1, y)

+K(−1, 1)I(x− 1, y + 1) +K(0,−1)I(x, y − 1)

+K(0, 0)I(x, y) +K(0, 1)I(x, y + 1)

+K(1,−1)I(x+ 1, y − 1) +K(1, 0)I(x+ 1, y)

+K(1, 1)I(x+ 1, y + 1)

Convolution: we apply a kernel in a ”mirrored way”,
i.e.:

I ′(x, y) =
∑

(i,j)∈N(x,y)

K(i, j)I(x− i, y − j)

for example:

K(1, 1)I(x− 1, y − 1) +K(0, 1)I(x, y − 1)

+K(−1, 1)I(x+ 1, y − 1) +K(1, 0)I(x− 1, y)

+K(0, 0)I(x, y) +K(−1, 0)I(x+ 1, y)

+K(1,−1)I(x− 1, y + 1) +K(0,−1)I(x, y + 1)

+K(−1,−1)I(x+ 1, y + 1)

Convolution is a correlation with the kernel reversed
with respect to the origin. If K(i, j) = K(−i,−j) then
correlation and convolution are equivalent.

We say that a kernel is separable if it can be written as:

K(m,n) = f(m)g(n)

This brings a computational advantage because, instead
of applying a two dimensional filter, we can apply two
different one dimensional filters sequentially. Rank 1
matrices represent separable filters.
The Gaussian filter is a filter which can be filled with the
following formula:

Gσ =
1

2πσ2
e−

(x2+y2)

2σ2

and it takes into account the value of a pixel based on
the distance from the other pixels (i.e. pixels which are
closer to the original one have a greater influence).

The Gaussian filter is separable, in facts we have:

g(x, y) =
1

2πσ2
exp[
−(x2 + y2

2σ2
] =

1

2πσ2
exp[
−x2

2σ2
]

1

2πσ2
exp[
−y2

2σ2
] = g(x)g(y)

By the central limit theorem, if we convolve several times
with a certain distribution we tend to a Gaussian. Hen-
ce, if we convolve a Gaussian with standard deviation σ
with itself we get another Gaussian with standard de-
viation σ

√
2. Repeated convolution by a Gaussian filter

produces the scale space of an image (i.e. you blur the
image more and more according to how many times you
convolve the image).

Other relevant filters are:

• Prewitt operator:−1 0 1
−1 0 1
−1 0 1


useful to detect vertical edges.

• Sobel operator: −1 0 1
−2 0 2
−1 0 1


also useful to detect vertical edges (but it takes
more into account the central pixels and less the
neighbours).

• Laplacian operator:0 1 0
1 −4 1
0 1 0


The Laplacian filter is isotropic (rotation inva-
riant). This filter wants to find the maximum of
the first derivative or the zero crossing of the second
derivative.

Soel Micheletti

• High-pass filter:−1 −1 −1
−1 8 −1
−1 −1 −1


High-pass filters let pass frequencies higher than a
certain treshold, while low-pass filters let pass fre-
quencies lower than a certain treshold. In the case
of images, high pass filters makes images look shar-
per and they emphasize fine details. Since the high
pass filter is sensitive to noise, one can first blur
the image and then apply the filter.

Sharpening images increase the frequency components to
enhance edge and they do the following operation:

I ′ = I + α|k · I|

where k is a high-pass filter and α is a scalar in [0, 1].

Image features

Image features takes care of important parts of images
(e.g. eyes in a face, ETH logo, edges, ...). The first thing
that we discuss is template matching, i.e. recognizing
an object described by a template t(x, y) in the image
s(x, y). We search for the best match by minimizing the
mean-squared error between image and template:

E(p, q) =

∞∑
x=−∞

∞∑
y=−∞

(s(x, y)− t(x− p, y − q))2

=

∞∑
x=−∞

∞∑
y=−∞

|s(x, y)|2 +

∞∑
x=−∞

∞∑
y=−∞

|t(x, y)|2

− 2

∞∑
x=−∞

∞∑
y=−∞

s(x, y)t(x− p, y − q)

which is equivalent to maximize

r(p, q) =

∞∑
x=−∞

∞∑
y=−∞

s(x, y)t(x− p, y − q)

= s(p, q) ∗ t(−p,−q)

Hence in order to find the template in the image we first
do the convolution of s(x, y) with the impulse t(−x,−y)
and then we search the peak.

The next topic we discuss is edge detection. We know
that an edge in an image is a region of the image where
we have a big difference in the intensity. We do this by
using some filters which sums to zero (intuitively because
if we apply it to a region with uniform intensity we want
to get zero as output). The idea (in a continuous space)
is that there are edges where the value of the gradient
operator is large (the gradient points in the direction of
the maximum change and it’s norm represent the slope
of intensity change). We approximate the gradient with
some discrete filters:

• Prewitt:−1 0 1
−1 0 1
−1 0 1

−1 −1 −1
0 0 0
1 1 1


• Sobel: −1 0 1

−2 0 2
−1 0 1

−1 −2 −1
0 0 0
1 2 1


• Roberts: (

0 1
−1 0

)(
1 0
0 −1

)
Instead of using the gradient we could also use the Lapla-
cian (i.e. sum of second order partial derivatives). This
can be approximated with the following discrete filters:0 1 0

1 −4 1
0 1 0

1 1 1
1 −8 1
1 1 1


The Laplacian aims to detect zeros of the second order
derivative (which are maxima of the first order deriva-
tives) without considering zeros of the original intensity
function. This type of filter is very sensitive to fine detail
and noise, hence it is useful to blur images first, for exam-
ple with a Gaussian filter. This brings us to the concept
of the Laplacian of Gaussian (LoG) operator, which has
the form:

LoG(x, y) =
1

πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2

Another very important edge detector is the Canny edge
detector, which is composed by 5 steps:

• Smooth image with Gaussian Filter

• Compute the magnitude and angle of the gradient
with some filter such as Sobel, Prewitt, ... The
formula for magnitude and gradient are given by:

M(x, y) =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

α(x, y) = tan−1

(
∂f

∂x
/
∂f

∂y

)
• Apply nonmaxima suppression to gradient magni-

tude image. This means that if our filters detects
more spots which look like an edge we keep only
the ones with a very big response (only the maxi-
ma spots which look like an edge). This is useful
because we know the direction of the edge (and
we don’t want to suppress things in this direction).
Concretely we quantize edge normal to one of four
directions (horizontal, vertical or in betweeen) and
if M(x, y) is smaller than either of its neighbours
in edge normal direction we suppress it, otherwise
we keep it.

• Double tresholding to detect strong and weak edge
pixels.

• Reject weak edge pixels not connected with strong
edge pixels.

The Hough transform can be used to extract different
kind of features (e.g. lines, but also circles and other
shapes). Let’s begin with explaining the idea with lines.
If we know the position (x, y) of an edge pixel we can
represent all possible lines y = mx + c which pass from
(x, y) in a plane with parameters m and c as axes. If
several edge pixels lie on a line in the original image, we
will have a peak in the plane with parameters m and

Soel Micheletti

c. Detecting the peak allows us to reconstruct the line
which connects those pixel edges. This approach has so-
me problem because we can not represent vertical lines
(those would have the parameter m which tends to infi-
nity) and hence, instead of having the parameters m and
c, we could have polar coordinates. Hough transform
can also be used to detect other shapes, e.g. circles. We
could have a plane with parameters x′ and y′ which re-
present all possible circles with a given fixed radius that
pass from a given point or a three dimensional hyperplane
where we include a variable radius as third variable.

Apart from edges, it is also important to detect cor-
ners. Hence it is desirable to have a corner detector
with accurate localization, invariance against shift, ro-
tation, scale, brightness and robust against noise. To
recognize edges the local displacement sensitivity can be
useful:

S(∆x,∆y) =
∑

(x,y)∈window

(f(x, y)− f(x+ ∆x, y + ∆y))
2

where, for small ∆x, ∆y, we can use the following linear
approximation:

f(x+ ∆x, y + ∆y) ≈ f(x, y) + fx(x, y)∆x+ fy(x, y)∆y

where fx(x, y) is the horizontal image gradient and
fy(x, y) is the vertical image gradient. We can then
approximate the local displacement sensitivity by:

S(∆x,∆y) ≈
∑

(x,y)∈ window

((
fx(x, y) fy(x, y)

)(∆x
∆y

))2

=
(
∆x ∆y

)
M

(
∆x
∆y

)
where

M =
∑

(x,y)∈ window

((
f2
x(x, y) fx(x, y)fy(x, y)

fx(x, y)fy(x, y) f2
y (x, y)

))

In order to find corners we want to maximize the eigenva-
lues of M: in facts if both eigenvalues are small it means

that there is not a big difference of intensity; if only one
of the two eigenvalues is large then we are in an edge
(because the intensity changes significantly only in one
direction) and if both eigenvalues are large then the in-
tensity changes significantly in both directions and hence
we are in a corner. In order to detect corners we can use
Harris Formula:

C(x, y) = det(M)− k(trace (M))2

= λ1λ2 − k(λ1 + λ2)2

where k is a small constant (e.g. 0.4).
Some desirable properties of corner detectors are:

• Accurate localization

• Invariance to shift, rotation, scale and brightness
change

• Robust against noise

• High repeatability

The Harris corner detector is invariant to brightness
change, to shift (because we use fixed size windows), to
rotation (because eigenvalues don’t depend on the rota-
tion of ellipses and iso-sensitivity curves are ellipses), but
is not invariant to scaling. This happens because it can
happen that the corner does not fit into our fixed size
window. A solution is to look for strong DoG responses
over scale space.

Fourier Transform

There are some open questions which bring us to the
concept of Fourier transform:

• What causes the tendency of differentiation to em-
phasize noise? Why when we do edge detection
we don’t just detect edges but we also emphasize
noise?

• In what precise respects are discrete images
different from continuous images?

• How do we avoid aliasing? Aliasing is the pheno-
menon that causes that if we want to shrink an

image and in order to do that we just take every
second pixel we get strange phenomena. Another
way to think about aliasing is the clock: if we look
at the seconds bar and we take a snapshot every 55
seconds, when we watch the sequence we have the
impression that the bar goes backwards.

The Fourier transform represent the function in a new
basis. In facts we can think to n× n images as a vector
space of size n2. We can apply a linear transformation to
transform the basis into another one by doing a dot pro-
duct between a transformation matrix and every basis
element. The Fourier transform is a transformation whe-
re every component, instead of representing the intensity
in a given pixel of the image, represents a wave pattern
over the image. We will do this in a way that does not
lose any information, in facts our matrix to change the
base in full rank and hence invertible. This allows us to
go from the pixel space to the Fourier space in both di-
rections. The basis elements of the Fourier basis are of
the form:

e−i2π(ux+vy) = cos 2π(ux+ vy)− i sin 2π(ux+ vy)

• F (u) =
´∞
−∞ f(x)e−i2πuxdx

• f(x) =
´∞
∞ F (u)ei2πuxdu

• F (u, v) =
´∞
∞
´∞
∞ f(x, y)e−i2π(ux+vy)dudv

• f(x, y) =
´∞
∞
´∞
∞ F (u, v)ei2π(ux+vy)dudv

• F (u, v) = 1
N

∑N−1
x=0

∑N−1
y=0 g(x, y)e−2πi(ux+vyN)

• Convolution: (f ∗ g)(t) =
´∞
∞ f(τ)g(t− τ)dτ

• Convolution theorem: F (g · h) = F (g) ∗ F (h) and
F (g ∗ h) = F (g) · F (h)

The Fourier transform of a real function often has com-
plex coefficients and for this reason is not easy to plot
and visualize it. Instead we can represent it with ma-
gnitude and phase. A curious fact is that images have
similar magnitude and very different phases. Let’s see
some important facts about the Fourier transform:

Soel Micheletti

• Magnitude: |F (u, v)|

• Phase: tan−1
(
Im(F (u,v))
Re(F (u,v))

)
• The Fourier transform is linear

• F (f(bt))(λ) = 1
bF (f)(λb)

• F (f(t− a))(λ) = ei2πaλ)F (f(t))(λ)

• F (fn)(λ) = (i2πλ)nF (f)(λ)

• F (f(ax+ by)) = 1
abF (ua ,

v
b

• F (f(x− a, y − b)) = ei2π(au+bv)F (u, v)

• F (δ(x− x0))(u) = e−i2πux0

• δ(u) =
´∞
−infty e

−i2πuxdx

• There is an inverse Fourier transform

• Scale function down means scale the transform up

Relation to sampling:

This means that in order to avoid aliasing we have to
sample at least at the double of the maximum frequency
(as formalised by Nyquist theorem).

Unitary transformations

A digital image can be represented with a matrix:

f =


f(0, 0) f(1, 0) . . . f(N − 1, 0)
f(0, 1) f(1, 1) . . . f(N − 1, 1)

...
... . . .

...
f(0, L− 1) f(1, L− 1) . . . f(N − 1, L− 1)



where we denote f(x, y) = fyx. The matrix f can be
represented as a column vector in the following way:

~f =



f(0, 0)
f(1, 0)

...
f(N − 1, 0)
f(0, 1)
f(1, 1)

...
f(N − 1, 1)

...
f(0, L− 1)

...
f(N − 1, L− 1)



=



f00

f01

...
f0(N−1)

f10

f11

...
f1(N−1)

...
f(L−1)0

...
f(L−1)(N−1)


Any linear image processing algorithm can be written
as:

~g = H ~f

Where H is a matrix (not necessarily square, e.g. if we
go from an image N ×N to an image M ×M . We recall
the definition of a linear operator L:

L
[
α~f1 + β ~f2

]
= α · L

[
~f1

]
+ β · L

[
~f2

]
Some linear algebra notations:

• A∗ = A if A is a real matrix.

• A∗ = Ā if A is a complex matrix.

• A real matrix is symmetric iff AT = A.

• A real matrix is ortogonal iff A−1 = AT .

• A complex matrix is hermitian iff (A∗)
T

= A.

• A complex matrix is unitary iff (A∗)
T
A =

A (A∗)
T

= In.

• We can write (A∗)
T

as AH .

Soel Micheletti

Unitary transforms are transforms described by a unita-
ry matrix, i.e. a matrix such that A−1 = AH (or AT

if the matrix is real). Those kind of matrices we have a
conservation of the energy or of the norm and hen-
ce we can interpret them as a rotation of the coordinate
system (and, possibly, sign flips). This holds because if
c = Af we have:

||c||2 = cHc = (Af)HAf = fHAHAf = fHf = ||f ||2

Eigenfaces: we want to solve the problem of face reco-
gnition, i.e. we have a database with several faces and,
given a new face, we want to find which person it corre-
sponds to (of course, provided that the face is into the
database). A possibility to do this would be to consider
the whole new image and calculate the euclidean distance
between this image and all other images is the database.
This is possible but very inefficient since images have a
lot of pixels. In order to be efficient we use this method:

1. We represent all images in the database as a column
vector and we represent them in a matrix A.

2. Those images must be normalized (i.e. all faces
must be centered).

3. We remove from every column the average face in
the database.

4. We calculate AAT . This is the covariance matrix
of A. The eigenvectors of the covariance matrix
corresponding to the largest eigenvalues represent
the direction along which the dataset has the maxi-
mum variance. Therefore they encode the features
which differ the most among faces. We took k of
those eigenvectors, which are also called eigenfa-
ces (because if we represent this vectors as images
they encode some face features). Every image can
be expressed as the sum of the mean face plus a
linear combination of those eigenfaces. In order to
calculate the eigenvectors we can do the SVD de-
composition of A. The eigenvectors of AAT are the
columns of matrix U .

5. For every image in the data set we calculate a vec-
tor p with the coefficients of the linear combination
with the eigenfaces to represent the picture.

6. Given a new image we calculate the coefficients
and we do an euclidean nearest neighbour with the
images in the data set.

7. If the euclidean distance with the nearest neighbour
is below a certain treshold we say that we have a
match, otherwise not.

An advantage of this method is that we discard some
noise in the pictures and in general works well because
only main characteristics are preserved and irrelevant de-
tails are discarded. A limitation of this method is that
differences due to varying illumination can vary across
pictures and can become a bottleneck.
Linear discriminant analysis: imagine that we have
a drug for a given illness. This drug works great for so-
me people, but make other people feel worse. We want
to decide who to give the drug to. In order to make a
classification of the people we look at some gene expres-
sions. We could take a look at a separation by using one,
two, three or tausends of genes. However this might be
inefficient. Linear discriminant analysis focuses on redu-
cing dimensions by maximizing the separability among
categories. Imagine that we want to project a two di-
mensional graph in a one dimensional graph in a way
that maximizes the separability: a naive way could be
ignoring one of the two components, but this is not very
good because we discard all useful informations brought
by that component. We want to find the axis which ma-
ximizes the separability and project all the points into
this axis. This new axis is created by considering two
criteria simultaneously:

• Maximize the distance between means

• Minimize the variation (scatter) within each
category

In order to consider them together we say that we want
to maximize the following ratio:

(µ1 − µ2)2

s2
1 + s2

2

Fisherfaces are a method which takes into account both
the distance between means (between-class scatter) and

the within-class scatter. Formally we want to find the
basis vectors (fisherfaces) which maximize:

Wopt = arg max
W

(
det
(
WRBW

H
)

det (WRWWH)

)
with:

RB =

c∑
i=1

Ni(µi − µ)(µi − µ)H

RW =

c∑
i=1

∑
xk∈Class(i)

(xk − µi)(xk − µi)H

The matrix W which maximizes the equation is given by:

RBwi = λiRWwi

By using this method we don’t preserve the maximum
energy, but we project the faces in a space where they
are optimally distinguishable. In general fisherfaces have
a much higher recognition rate than eigenfaces.

Pyramids and Wavelets

The idea at the basis of pyramids is to exploit scale-space
representations. That is from an original signal f(x) (our
original image), we generate a parametric family of si-
gnals f t(x), where fine-scale information is successively
suppressed. That is from our original image we generate
another image which contains less details and then we go
on until a certain number of times. Image pyramids is the
idea by which we express that from an original image we
use some approximation filter which removes some fine-
details and then we make the image smaller (usually by
a factor of 2). Then from this image we go on recursively
until we get to an image of a single pixel which contain
some very coarse grained information about the original
image. This approach can be used for correspondence
searching (i.e. we first look at coarse scales and then we
refine with finer scales by exploiting the information we
gained at a coarser level) and edge tracking (i.e. a good
edge at a fine scale has parents at a coarser scale). It was
used for example in CMU edge detection. Two examples
of pyramids are the following:

Soel Micheletti

• Gaussian pyramid: smooth with Gaussian filter
and then reduce the size. This representation is re-
dundant because Gaussians are low pass filters and
so we don’t at a coarser level we don’t loose many
information.

• Laplacian filter: with this term we mean the dif-
ference of Gaussian. This is a band pass filter, i.e.
each level represents spatial frequencies (largely)
unpresented at other levels.

JPEG compression:

1. Transform RGB to YCbCr (because we are more
sensitive to brightness change than color change).

2. Subsampling+partitioning: decrease chroma pixels
(e.g. a 4 × 4 grid of the color image becomes one
pixel). We divide the image in blocks of size 8× 8.

3. DCT to frequency domain. DCT is similar to Fou-
rier, but it does not involve complex numbers. We
do DCT on the 8 × 8 blocks. The idea is that big
objects have small frequency and small objects ha-
ve big frequency. The top left pixel of the 8 × 8
block is called DC, the other ones AC.

4. Quantization: divide 8× 8 blocks with elements of
a quantization matrix. The elements of the quan-
tization matrix are close to 1 in the top left area
and big by going towards bottom right. We discard
the zeros after the division (corresponding to high
frequencies).

5. DC coding

6. RLE for AC

7. Huffman coding

Optical Flow

Optical flow studies how things moves in images and vi-
deos. Motion is important because sometimes is the only
cue we can have for segmentation (e.g. random images
with some patterns that move). An intuitive definition
of optical flow is the apparent motion of brightness pat-
terns. Ideally the optical flow is the projection of three-
dimensional velocity vectors on image. However, this is
not always true, for example we can have:

• Uniform sphere rotating. We will get an optical
flow of zero although there is motion.

• Static scene with light changing. We will get a
non-zero optical flow although there is no motion.

Applications:

• Motion segmentation: the image is segmented
by looking at which parts of the image move
differently.

• Stabilization: movement of the camera can be fil-
tered out by using optimal flow in the captured
video to calculate the movement of the camera and
canceling it out.

• Tracking (follow something on a video sequence):
an object in a video can be tracked out by using
optical flow to follow it.

• Slow motion.

• Video compression: for video compression we can
make use of the temporal redundancy and predict
frames based on previously encoded frames using
its optical flow. Video compression using optical
flow is ineffective if there are many scene changes
or high motion.

With I(x, y, t) we mean the brightness at the point (x, y)
at time t. The brightness constancy assumption tells
that a pixel tat moves from one step to the other does
not change its brightness, in a formula:

I(x+
dx

dt
δt, y +

dy

dt
δt, t+ δt) = I(x, y, t)

from which one can derive the optical flow constraint:

dI

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0

Aperture problem
The aperture problem refers to the fact that when flow
is computed for a point that lies along a linear feature,
it is not possible to determine the exact location of the
corresponding point in the second image. Thus, it is on-
ly possible to determine the flow that is normal to the
linear feature.

Lukas-Kanade
Assumptions:

• Brightness constancy: projection of the same point
looks the same in all frames.

• Small motion: objects move very slowly from frame
to frame, which means that corresponding points
from two consecutive images are not far apart

• Spatial coherence: points move like their neigh-
bours. More precisely: points inside a patch move
in the same way (reasonable, point which are part
of the same object move in the same way).

The optical flow is computed for an image patch instead
that for a single pixel. This is done in order to resolve the
ambiguity of the optical flow equation Ix·u+Iy ·v+It = 0,
which is an equation with two unknowns.
The derivation works as follow: the brightness constancy
assumption allow us to write

I(x, y, t) = I(x+ δx, y + δy, t+ δt)

The small motion assumption allow us to use a Taylor
approximation and we get:

I(x, y, t) ∼ I(x, y, y) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt

Hence we want:

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt ∼ 0

Soel Micheletti

With the spatial coherence assumption we exploit the
fact that multiple points move similarly and we get:Ix(p1) Iy(p1)

...
...

Ix(pn) Iy(pn)

 · [u
v

]
= −

−It(p1)
...

−It(pn)


If the equation on the left is invertible there is no pro-
blem, but if all gradients point in the same direction (e.g.
when we have only one point or when we are along an ed-
ge) the matrix is not invertible and we have an aperture
problem.
This approach works well for small motion. If we ha-
ve large motion we can use coarse-to-fine estimation: we
build image pyramids (the layers are the same image with
different resolutions) and estimate the flow on each py-
ramid layer. Result of the flow calculation on the lowest
resolution layer are passed to a higher resolution layer
and so on. This works because large motion in the ori-
ginal image corresponds to smaller motion in the layers
which have lower resolution. Thus, optical flow can be
applied on those levels.

Iterative refinement

• Estimate velocity at each pixel using one iteration
of Lucas and Kanade estimation.

• Warp one image towards the other using the
estimated flow field.

• Refine estimate by repeating the process.

Video Compression

Our eye system is designed to look in a specific place. If
we know where people would look in an image we could
represent that area with high resolution and the rest of
the picture with a lower resolution, if people look on-
ly in the area with high resolution this does not make
a difference. However, since we don’t know where peo-
ple will look we can not do this. Video compression has
some difference compared to image compression. In fac-
ts our visual system automatically follows motion (i.e.
if we watch a video we will automatically focus on the

sections of the sequence of images which move). This
implies that some distorsions are not as perceivable as in
image coding (but they become perceivable if we froze
the video to a specific image). A succession of images is
perceived as continuous if frequency is sufficiently high
(e.g. 24Hz, but we would need some more in order to
avoid aliasing and flickering, which can be perceived up
to 60Hz in periphery).
A video is a 2D+t sequence (that is a sequence of images
which change over time). A common way to compress
video is to interlace it. Each frame of an interlaced video
signal shows every other horizontal line of the image. As
the frames are projected on the screen, the video signal
alternates between showing even and odd lines. When
this is done fast enough, i.e. around 60 frames per se-
cond, the video image looks smooth to the human eye.
Because only half the image is sent with each frame, in-
terlaced video uses roughly half the bandwidth than it
would sending the entire picture. Videos can be compres-
sed by dropping unimportant details, i.e. by exploiting
spatial correlation between neighbouring pixels and tem-
poral correlation between frames (in facts, most frames
don’t change a lot in the next time step). Hence there are
two kind of redundancies that we can exploit in order to
compress videos: temporal redundancy (which happens
when two successive frames are very similar and there
is just a slight motion between them) and non-temporal
redundancy (i.e.techniques used when temporal redun-
dancy is difficult to exploit, e.g. where there is a scene
change or when there is high motion such as in an ice
hockey game).
Predictive methods predict the current frame based on
previously coded frames and there are three types of this:

• I-frame: frame coded independently of other frames
(just like an image).

• P-frame: code based on previously coded frame.

• B-frame: coded based on both previous and future
coded frames

A popular technique is called block matching motion
estimation. The idea is that we partition each frame in-
to blocks of a given size and then we describe the motion
of each block by finding the best matching block in the

referenced frame. For each block we have a motion vector
which describes the translation of the box from the old
frame to the new one. The collection of motion vectors
for all the blocks in a frame is the motion vector field.
In order to decide which one is the best block in the new
frame we have two different metrics: MSE (which mini-
mizes the square of the difference between blocks) and
MAE (which minimizes the absolute value). In order to
search for the best block we could use a full search (which
can be inefficient), or a partial search such as 3-step log
search which is shown in the following image.

The advantages of this algorithm are: robustness to
compression; motion vector field is easy to represent;
simple and periodic structure. The disadvantages are:
breaks down for complex motion (i.e. non translational);
often produces blocking artifacts.
This technique, combined with things which are used in
image compression such as DCT to exploit spatial re-
dundancy, color space conversion, quantizer and huff-
man coding, allow one to build a good video compression
method.

Texture

We represent texture as a weighted sum of some dictio-
nary words and we want to enforce sparsity instead of
smoothness. In texture synthesis we have an example of
the texture that we want to generate and the goal is to
generate another image which is similar but not exac-
tly the same (i.e. you don’t copy the pattern but you
generate a similar statistic).
Texture can be done with pyramids by building a Lapla-
cian pyramid of the texture image and then apply some

Soel Micheletti

oriented filter to each level. This gives us image informa-
tion at a particular scale and orientation. This is better
then using different sized filters for efficiency (smaller fil-
ters on smaller images are more efficient than big filters
on big images).
Histograms are not good for textures because they give
only frequency information and no positional informa-
tion. Moreover many different textures have the same
histogram. A better solution is using the co-occurrence
matrix.
In order to generate texture maps one can use the chaos-
mosaic technique, i.e. use a file with the final image of
the texture and choose random blocks of image and place
them in random spots. This works well for textures with
smooth edges (e.g. vegetation), but in some cases it may
bring troubles (e.g. brick wall).

Radon Transform

In medical imaging we can distinguish two forms of
imaging methods:

• Radiation source is outside the body (e.g. X-ray,
ultrasounds)

• Radiation source is inside the body (e.g. MRI,
PET, SPECT)

We will take a look at computed tomography (CT) which
use a mathematical basis developped by Radon in 1917
but became a scanning device only in the 1960s. The
idea is that x-rays pass through the body from different
directions and, by knowing the difference of the energy
when the ray enters the body and when the ray leaves
the body, we have a measure of the tendency of the ob-
ject to absorb or scatter x-rays. Since different materials
absorb the rays in a different way, by combining multiple
measurements we can get insights about the structure of
the object. CT has had the following evolution:

• Parallel beam: a geometry with a single pencil
which is shooting parallel X rays through the ob-
ject which were detected on the other side. The
system is moving in a circle.

• Fan-bean: X-rays are emitted under angle and
collected by a 1D array of detectors.

• Cone-beam: use a cone shape and a 2D array
detector.

An X-ray moves along a straight line and at a position
s has intensity I(s). When the X-ray travels a little bit
through the object (by a δs) the intensity is reduced by
δI. The reduction depends on the intensity and on the
optical density u(s) of the material. For small δs we have:

δI

I(s)
= −uδs

By combining all the contributions to the reduction of
the intensity of the X-ray we get:

If = I0e
−R

where R is the Radon transform of u(s):

R =

ˆ
L

u(s)ds

The Radon transform has the following properties:

• Linearity.

• If the function is shifted, only the ρ coordinate
changes, not the angle.

• If the function is rotated, only the Θ coordinate
changes, not the radius.

• Convolution: The Radon transform of the 2D
convolution of two functions is equal to the 1D
convolution of the Radon transform of the same
functions.

By measuring the intensities of the rays at the begin-
ning and at the end we can know the value of the Radon
transform. How can we go from the value of the Radon
transform to the value of the function u?

The system can be solved in a least square sense.
An alternative approach is to exploit the Fourier Slice
Theorem, i.e. the fact that the 1D Fourier transform of
the attenuation measurements g = Rf is equal to the
2D Fourier transform of the function. This gives us the
following algorithm:

1. Measure projection (attenuation) data.

2. Do the 1D Fourier transform of projection data.

3. Make the 2D inverse Fourier transform and sum
with previous image.

The previous algorithm gives a final image which is blur-
red, but this issue can be solved by applying an high-pass
filter between points 2 and 3.

Introduction to graphics

Computer graphics is the use of computers to
synthesize and manipulate visual information.
As introductory activity we considered drawing a 3D cu-
be in the 2D plane. The cube is described by the coor-
dinates of its vertices, by its edges and an observation
point. The basic strategy is mapping 3D vertices into
2D points and then drawing straight lines between 2D
points corresponding to edges. We have to consider the
perspective, i.e. the fact that objects look smaller as they
get further away.

Soel Micheletti

With this in mind we can design a simple algorithm to
draw the 3D cube in the plane. Let’s suppose that the
camera is in an arbitrary position c ∈ R3. We do the
following:

1. For each edge (u, v) we compute (u−c, v−c) which
is of the form ((x1, y1, z1), (x2, y2, z2)).

2. We get the following edges in the two dimensional
space: (1

z1
(x1, y1), 1

z2
(x2, y2)).

Now we consider another important problem: how to
draw lines on a screen? Which pixels should we color in
to depict the line? This is a first example of rasteriza-
tion, i.e. conversion of continuous objects to a discrete
representation on a pixel grid. Two examples to address
this problem are:

• Color every pixel touched by the line.

• Diamond rule (i.e. color the pixel if and only if the
line touches the core of the pixel).

Note that in principle it is possible to check for every
pixel of the image, whether it should be colored or not,
but this has complexity O(n2) where n2 is the number
of pixels in the image. However there is a better me-
thod to address the problem, known as incremental
line rasterization.
The idea is the following: a line can be represented by
its endpoints (u1, v1) and (u2, v2). The line has slope
s = v2−v1

u2−u1
. Let’s consider the special case where the line

points up and right (the other cases are analogous). We
can do the following:

Drawing triangles

In order to draw triangles on the screen we have to answer
two important questions:

• Coverage: given a pixel, is it in the triangle or
not?

• Occlusion: if a pixel belongs to more than one
triangle, which color should we use? In other
words, which triangle is closest to the camera?

The visibility problem answers the question: which scene
geometry is visible within each screen pixel?

We can approach this problem from two different
perspectives:

• What scene geometry projects into a screen pi-
xel? (Coverage) Which geometry is visible from
the camera at that pixel? (Occlusion)

• What scene geometry is hit by a ray from a pixel
through the pinhole? (Coverage) What object is
the first hit along the ray? (Occlusion)

Now we go back to the coverage problem, i.e. determine
which pixels are overlapped by the triangle. There are
several possibilities:

• The whole pixel is part of the triangle.

• The whole pixel is not part of the triangle.

• A part of the pixel is part the triangle, another part
not.

If we are in one of the two cases the problem is easy, if
we are in the third part we compute the fraction of the
pixel which is covered by the triangle (with the same idea
of Monte Carlo sampling) and we assign the correspon-
ding fraction of the color of the triangle to the pixel. If
we have more than one triangle in this pixel we do the
sampling for every single triangle and we mix the results.

Now we consider again the problem of sampling (i.e. re-
presenting a continuous function in a discrete manner,
which is exactly what we do with the representation of
triangles on pixels). Obviously we can sample some poin-
ts of a function f in a regular interval and then use some
methods (e.g. nearest neighbour or linear interpolation).
If we do it we see the tradeoff between number of samples
and efficiency: if we increase the number of samples we
get a better result, but the cost for it is a worse perfor-
mance. The sampling rate is important, but it is limited
in real world situations (e.g. we can not get the frequence
of pixels that we want because this is limited by state-
of-the-art technology). Now we go into some details of
the mathematical representation of sampling. First we
define the Dirac function:

δ(x) :=

{
0 for x 6= 0

undefined at x = 0

Soel Micheletti

The Dirac function has the following property:

ˆ ∞
−∞

δ(x)dx = 1

The sifting property of the impulse says that:

f(a) =

ˆ ∞
−∞

f(x)δ(x− a)

Now we consider two problems: sampling (i.e. approxi-
mating a continuous function discretely) and reconstruc-
tion (i.e. given a discrete approximation of a function we
have to reconstructing in the best possible way).

The reconstruction can be represented as a convolution
between a filter and the sampled signal:

(f ∗ g) (x) =

ˆ ∞
−∞

f(y)g(x− y)dy

where some examples of filters are:

f(x) =

{
1 |x| ≤ 0.5

0 otherwise

h(x) =

{
1/T |x| ≤ T

2

0 otherwise

Now we can think to coverage as a 2D signal:

coverage(x, y) =

{
1 if the triangle contains point (x,y)

0 otherwise

where we simply consider a coverage point in the pixel
(e.g. pixel center). If we have edge cases (e.g. two trian-
gles both have an edge on the coverage point), there are
different possibilities. OpenGL/Direct3D say that an ed-
ge that falls directly on a screen sample point is classified
within the triangle if the edge is a top or a left edge.

We know that signals can be represented as superposi-
tions of frequencies (i.e. a function f(x) can be represen-
ted as f(x) = f1(x) + f2(x) + f3(x)). The same happens
with images, let’s see an example:

The problem of aliasing happens when we sample hi-
gh frequencies but, due to undersampling, those high
frequencies appears as low frequencies.

An intuitive example of aliasing is given by the clock.
If we take a picture every 55 minutes, it looks like the
clock hand goes backwards. In this context there is the
Nyquist-Shannon theorem, which says that a signal
where all frequencies are less equal than ω0 can be per-
fectly reconstructed if sampled with period T > 1

2ω0
and

the reconstruction is performed using a normalized sinc.
Aliasing happens a lot on images due to undersampling
and hence we get strange artifacts in edges. A possible
solution is oversampling.
We conclude by explaining how to do a point-in-
triangle test. Given the vertices Pi = (Xi, Yi) we com-
pute dXi = Xi+1 − Xi and dYi = Yi+1 − Yi. Then we
compute Ei(x, y) = (x−Xi)dYi−(y−Yi)dXi. If Ei(x, y)
is zero, then the point is on the edge, if it is greater than
zero it is outside the edge and if it is less than zero it is

Soel Micheletti

inside the edge. So in order to compute if a point is in-
side the triangle we check that it is inside all three edges
(or on some edges based on the triangle coverage rules).

Transforms

In computer graphics transforms are everywhere. A tran-
sform is a function which maps a point of an image to
another point. By applying this function to every point
of a shape (e.g. a cube) we can do several things (ma-
ke it taller, fatter, squishier, slantier, ...). In this cour-
se we study linear transforms because, computationally
speaking, they offer several advantages and they are still
very powerful. Moreover, over a short distance or small
amount of time, all maps can be approximated as linear
maps (Taylor’s theorem). Composition of linear tran-
sformations is linear. The key idea of linear maps is that
they maps lines to lines, while keeping the origin fixed.
In order to check whether a map f is linear we have to
show that for all vectors u, v and every scalar α we have:

f(u+ v) = f(u) + f(v)

f(αu) = αf(u)

For maps between Rm and Rn we have that if a map f
can be expressed as

f(u) =

m∑
i=1

uiai

with fixed vectors ai, then it is linear. In this case all
ai ∈ Rn. It is easy that if the formula above holds,

then the requirements to show that a map is linear are
satisfied.

We have:

• u is a linear combination of e1 =

(
e11

e12

)
and

e2 =

(
e21

e22

)
i.e. u = α · e1 + β · e2.

• Since f is a linear map we have: f(u) = u1a1+u2a2.
We can rewrite this as f(u) = f(α · e1 + β · e2) =

f

((
α · e11

α · e12

)
+

(
β · e21

β · e22

))
= (α · e11 + β · e21) ·

a1 + (α · e12 + β · e22) ·a2 = α (a1 · e11 + a2 · e12) +
β (a1 · e21 + a2 · e22) = α · f(e1) + β · f(e2). This
means that a1 = f(e1) and a2 = f(e2) and hence
by knowing how to map the basis vectors of the
initial basis we know how to map the entire space.

Now we recall a very useful formula from linear algebra.
If we have a vector space whose basis can be described
with a matrix S with respect to a reference space R and
another vector space whose basis can be described with
a matrix E with respect to R, then if we have a vector v
expressed in the basis S we can transform it in basis E
with the following formula:

E−1Sv

More in general, if instead of using the identity map we
want to use an arbitrary map M (always expressed with
respect to R) we get:

E−1MSv

For example consider the basis matrices A =

(
2 1
1 1

)
and

B =

(
1 3
3 1

)
given with canonical coordinates. Consider

the vector v =

(
2
2

)
with respect to A. This means that

the vector v is the vector

(
6
4

)
with respect to the cano-

nical coordinates. In order to express v with respect to
B we do:

B−1

(
1 0
0 1

)
Av

=

(
− 1

8
3
8

3
8 − 1

8

)(
2 1
1 2

)(
2
2

)
=

(
3
4
7
4

)
Now we are going to see several useful transformations:
Uniform scale:
We simply do the following operation for every vector x:
Sa(x) = ax. In order to write this in matrix form we
simply take a look to what happens to basis vectors and
we get:

Sa(x) =

(
a 0
0 a

)
We show that is is a linear transformation:

Sa(αx) = aαx = α(ax) = αSa(x)

Sa(x+ y) = a(x+ y) = ax+ ay = Sa(x) + Sa(y)

Non uniform scale:
Very similar to uniform scale, but the constant by which
we multiply the basis vectors is different, i.e. S(x) =
ax1e1 + bx2e2 or, in matrix form:

S(x) =

(
a 0
0 b

)
x

Soel Micheletti

Rotation:
Rotation means the rotation (in counter-clockwise direc-
tion) of every point by an angle Θ. This transformation
preserves the norm of every vector (i.e. the distances
between points in the shape don’t change) and hence it
is called isometric transformation. Again, in order to
know how it looks like, we think to what happens to

the basis vectors and we get RΘ(x) = x1

(
cos(Θ)
sin(Θ)

)
+

x2

(
− sin(Θ)
cos(Θ)

)
or, in matrix form:(

cos(Θ) − sin(Θ)
sin(Θ) cos(Θ)

)
Note that rotation is a linear transformation only if we
do a rotation about the origin, otherwise (since linear
transformations preserve the position of the origin), the
transformation is not linear.

Rx,Θ =

1 0 0
0 cos(Θ) − sin(Θ)
0 sin(Θ) cos(Θ)



Ry,Θ =

 cos(Θ) 0 sin(Θ)
0 1 0

− sin(Θ) 0 cos(Θ)



Rz,Θ =

cos(Θ) − sin(Θ) 0
sin(Θ) cos(Θ) 0

0 0 1


Shear in x direction:
A transformation described by the following matrix:(

1 a
0 1

)

Now we take a look at the translation transformations
that, for all vectors x returns the vector x+ b where b is
a constant vector. This transformation is not linear, but
it is affine. However there is a simple trick which makes
this transformation linear, i.e. homogeneous coordi-
nates. The key idea is to lift 2D points to a 3D space.

Concretely we represent the point

(
x1

x2

)
as

x1

x2

1

. And

2D transforms are represented by 3×3 matrices, e.g. the
rotation matrix is represented as:cos(Θ) − sin(Θ) 0

sin(Θ) cos(Θ) 0
0 0 1

x1

x2

1


Now we can represent translations in the following way:1 0 b1

0 1 b2
0 0 1

x1

x2

1

 =

x1 + b1
x2 + b2

1



and one can easily show that this is a linear map.
In general we can express several operations by compo-
sing different linear maps (e.g. to rotate with respect to a
certain point different from the origin we first do a trans-
lation, then a rotation and finally another translation).
It’s important to note that the composition of maps is
non commutative (because matrix multiplication is non
commutative).

Geometry and Texture

What we have seen about transformations can be used in
order to map an object in world coordinate to our final
image. A very important concept is the one of the view
frustum, which is basically the area that will be in the
final image. The following matrix is the transformation
to put everything in an unit cube:

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear−zfar

2·xfar·znear
znear−zfar

0 0 −1 0


Hence in order to render an image captured with a
camera in the 3D world we have the following pipeline:

1. Transform world coordinates to camera coordina-
tes. Canonical form: camera at origin looking down
the z-axis.

2. Projection transform + homogeneous divide. Ca-
nonical form: visible region of scene contained
within the cube.

3. Screen transform.

4. Compute screen coverage.

Now we want to go beyond the cube man and do some
more realistic geometry.
Geometry can be described in multiple ways:

• Linguistic, e.g. unit circle

• Implicit, e.g. x2 + y2 = 1

• Explicit, e.g. (cos(Θ), sin(Θ))

• Dynamic, i.e. with differential equations

• Discrete, i.e. by a set of points

Soel Micheletti

Which option is the best depends on what we have to
do, in facts there are some trade-offs. For example if
we use implicit coordinates it is easy to know whether a
point is part of the shape we are describing or not, but
sampling (i.e. give me a point in the shape) is harder.
On the other hand explicit coordinates are very useful to
sample (because all points are directly given), but insi-
de/ outside test can be difficult. Hence we can say that
different representations are better suited for different ty-
pes of geometry and different types of operations we may
want to perform. Now we want to understand how to ge-
nerate images which are not like the cube man but more
realistic.
First, let’s take a closer look to implicit representa-
tions:

• Algebraic surfaces: a surface is a zero set of a po-
lynomial in x, y, z. However, to represent complica-
ted shapes such as a cow, it is very difficult to come
up with a polynomial. In order to do that we use
constructive solid geometry, i.e. we build compli-
cated shapes via boolean operations such as union,
intersection and difference. By applying a chain
of those operations we can build more complicated
shapes.

• Distance function: gives distance to closest point
on object.

• Level set method: implicit methods can be writ-
ten in the form f(x) = 0 (i.e. every x that satisfies
the relation is on the shape). We can store a grid
of values of approximating the function f and then
we say that the surface is found where interpola-
ted values equal zero. Of course, if we use a grid
with more points we have something more accura-
te. The drawback of this is that the storage for a
2D surface is now O(n3) (also for an two dimensio-
nal image in the 3D space we need to approximate
f in the whole space).

• L-Systems: very useful to represent fractals or
organic shapes (e.g. trees). L-Systems are compo-
sed by a set of grammar rules, a start symbol and
a semantic that maps every symbol to a concrete
action in the image. For example one can have F

as start symbol and a single grammar rule which
maps F to F +F −−F +F . In this case, after two
applications, we get:

F + F −−F + F

+

F + F −−F + F

−−
F + F −−F + F

+

F + F −−F + F

If we assign to F the meaning draw forward one
unit, to + the meaning rotate left and to− the mea-
ning rotate right we draw (when we apply the gram-
mar rule several times), the von Koch snowflake
curve.

We can add the branching structures in order to
make the L-System even more powerful. This
means that we use the square brackets to simulate
a stack behaviour. Concretely we do the operations
and when we see a [we save the state we are curren-
tly in and then we do the operations that follows
the bracket until we see a]. When we get there
we go back to the state we saved before entering
in the first square bracket. By doing this we can
easily model very organic shapes which look like a
tree:

Moreover, L-Systems can be made even better by
adding randomness, i.e. for some starting symbols
we have more than one grammar rule, each one
with a given probability.

In general implicit methods have the following pros:

• Easy to make inside/ outside tests.

• Other queries may be easy, e.g. distance to surface.

• Easy to handle changes in topology.

And the following cons:

• Expensive to find all points in the shape.

• May be difficult to model complex shapes.

Now we move into some techniques for explicit
representations:

• Point cloud: this is the simplest explicit repre-
sentation and it consists of a set of points of the
form (x, y, z). In this way we can easily represent
any kind of geometry, but this is useful only for
large datasets (i.e. when we have several points
per pixel). With this method it’s difficult to draw
undersampled regions.

• Polygonal mesh: store vertices and polygons,
mostly triangles. With this method it is easier
to do processing and simulations, but they requi-
re more involved data structures. An example of
data structure (used in the STL format), simply
saves all triangles with a triple of vertices: this is
redundant because we save some point more than
once, but it is still used nowadays. An alternative
is the indexed face set that assign to each vertex
an ID and then it stores all triangles by using the
IDs instead of writing the whole coordinate multi-
ple times. There are multiple ways to generate a
polygonal mesh, e.g. subdivision surfaces (i.e. ap-
plying an averaging rule in order to obtain a smooth
surface from a starting polygon).

Until now we have seen how to represent a real world ob-
ject into a screen. However we still can improve and the
next topic we are going to discuss is light. In facts, when
we look at a picture, not every area of an object has the
same lighting conditions. In order to understand this we

Soel Micheletti

do an analogy to what happens with seasons: why it’s
winter colder than summer? This has a relationship with
the irradiance, i.e. the energy per time per area which is
calculated as E = Φ

A where Φ is a measure for the energy
that lands on A. Lambert’s law tells that if we consider
two different areas separated by an angle Θ we get:

E =
Φ

A′
=

Φ cos(Θ)

A

Hence the reason why we have seasons has to do with the
changing of this angle Θ during the year.
The simplest shading model in computer graphics is cal-
led N-dot-L lighting. This means that we multiply a gray
scale image by the factor max(0, NL̇) where N is a vector
normal to the surface and L is the direction of the light.
Since the two vectors are normalized the dot product gi-
ves us the cosine of the angle between the normal to the
surface and the light source. If the angle is in

[
π
2 ,

3π
2

]
the

angle the surface is ”the dark side of the moon” and hen-
ce is completely black, otherwise the value of the color
is larger when the light comes in a more perpendicular
way.
Texture: texture is used to map some images on a sur-
face, e.g. to add a wood effect to the faces of a cube.
Basically for each covered screen sample we must find
the equivalent texture coordinate; then we lookup for
the color in the texture image and we set the sample’s
color to the color we have found in the texture image.
Usually we do this process for triangle vertices and then
we use attribute interpolation for the samples inside the
triangles. We start from samples which have the same
distance in the image plane but variable distances in the
texture space where we are actually doing the sampling.
Hence we have to be very careful in order to not introduce
aliasing artifacts.

Graphics Pipeline

Now we are going to put what we know (i.e. how to
draw a triangle, transforms, perspective projection and
texture sampling) together in order to get the end-to-end
rasterization pipeline. The first topic we need to cover is
occlusion.
If we have some image which is not yet rasterized (i.e.
we haven’t assigned colors to the pixels), how can we

assign a color to each pixel based on which object is clo-
ser? A useful tool is the depth buffer (aka Z buffer),
a two dimensional array that for each coverage sample
point stores the depth of closest object at this sample
point that has been processed by the render so far. By
convention black means small distance and white means
large distance. In order to compute the depth of sample
points on a triangle we can save the depth values of the
vertices and then interpolate just like any other attribute
that varies linearly over the surface of the triangle. If we
have three triangles and an occlusion phenomena the or-
der by which we process the triangles has an impact on
efficiency, but not on the correctness of the algorithm.
The depth test works as follow:

1. Inputs: depth of sample point d; color of d; co-
lor matrix; coordinate x of sample; coordinate y of
sample.

2. if depth of d is less than the depth stored in the
Z buffer on the coordinates x,y, then update the
coordinate of the z buffer on the coordinates x, y
to the depth of d and assign to the color matrix in
position x,y the color of d.

This approach also works with supersampling because
the occlusion test is per sample and not per pixel.
Now we want to deal with semi-transparent objects and
the tool we will use for this is compositing. We don’t
use only rgb value, but we add a parameter α for the
opacity (α = 1 means fully opaque, α = 0 means fully
transparent). With the help of this new parameter we
can define the over operator (which is non commutati-
ve). B over A means: composite image B with opacity
αB over image A with opacity αA. The composited color
of the new image C is given by αBB+ (1−αB)αAA and
the opacity of the image C is αB + (1−αB)αA. In order
to be compact we can write:

A′ = [αAAR αAAG αAAB αA]
T

B′ = [αBBR αBBG αBBB αB]
T

C ′ = B′ + (1− αB)A′

If we want to render a mixture of opaque and transparent
triangles we do the following:

1. Render opaque surfaces using depth-buffered occlu-
sion (if depth test passed, triangle overwrites value
in color buffer at sample).

2. Disable depth buffer update, render semi-
transparent surface in back-to-front order. If depth
test passed is composited over contents of color
buffer at sample.

This gives us the following pseudocode:

Now we study the end-to-end rasterization pipeline:

1. Step 1: Transform triangle vertices into camera
space.

2. Step 2: Apply perspective projection transform
to transform triangle vertices into normalized
coordinate space.

3. Step 3: Discard triangles that lie complete outside
the unit cube and clip triangles that extend beyond
the unit cube to the cube.

4. Step 4: Transform vertex xy positions from nor-
malized coordinates into screen coordinates (based
on screen size).

5. Step 5: Compute triangle edge equations and
attribute equations.

6. Step 6: Sample coverage, evaluate Z buffer,

7. Step 7: Compute triangle color at sample point
(color interpolation, sample texture map).

8. Step 8: Perform depth test and update depth
value at covered sample if necessary.

Soel Micheletti

9. Step 9: Update color buffer

Rendering Equation

We begin by addressing the fundamental question what
is color? Light is electromagnetic radiation (a form of
energy which is all around us) and color is what we in-
terpret as some of the frequency in the electromagnetic
spectrum. Light is oscillating electric and magnetic field
and the frequency determines the color of light. It is
important to point out the difference between frequency
(i.e. time difference between two peaks) and wavelength
(i.e. space between two peaks). Those concepts are re-
lated to speed and in general electromagnetic radiations
travel in vacuum at the speed of light. Heat generates
light: in facts by combining some physics concept we
know that the motion of charges particles generates an
EM field and every object moving is hence producing co-
lor. The frequency is determined by the temperature.
The visible spectrum (the part we refer to as color) is
only a small part of the whole spectrum and has a wave-
length from 400 (blue) to 700 (red) nanometers. Natural
light, i.e. the light which comes from the sun, consists
of a mixture of frequency (it is a very hot body and it
emits energy in the entire spectrum). Much of the ener-
gy which reaches the earth from the sun is in the visible
spectrum range and a lot of other frequencies are absor-
bed by the atmosphere. Why do we care about the sun?
Because for us it is useful to compare artificial light (e.g.
the one which comes from a bulb) with the light which
comes from the sun. In general it is possible, given a
source of light, to generate its emission spectrum: the
one of natural light brings every color (a little bit more
of blue than red, but the pattern is pretty much homoge-
neous), while for example the cool white LED has only a
very tiny fraction of red. On the market there are a lot of
different lightbulbs with different spectrum and usually
there is a tradeoff between quality of the spectrum and
power efficiency. In general we have to consider both the
emission spectrum and the absorption spectrum (which
is very useful when we talk about paints, ink, ...) and this
spectrum tells us how much light is absorbed (i.e. turned
into heat) by an object. In general the most important
concepts to describe color are:

• Intensity

• Emission

• Absorption

as a function of frequency. Everything else is just a
convenient approximation ;)
An interesting example is reflection: if a light source has
emission spectrum f(λ) and the surface has reflection
spectrum g(λ), then the resulting intensity is the product
f(λ) · g(λ).
Now we go a step further in our travel into the world
of colors and we see how electromagnetic radiation
ended up perceived by a human as a certain co-
lor? The eye is a photosensor which takes light as input
(formally, electromagnetic distribution over wavelength
Φ(λ)) and generate an output response encoded as elec-
trical signal. How the response is generated depends by
the spectral response function f(λ) which is the sensitivi-
ty of sensor to light of a given wavelength. Greater f(λ)
corresponds to a more efficient sensor, i.e. when f(λ) is
large a small amount of light at wavelength λ will trigger
a large sensor response. The output can be expressed
with the following formula:

R =

ˆ
λ

Φ(λ)f(λ)dλ

There are two very important structures which take the
spectrum and transform it into signals to the brain:

• Rods: light-sensitive but not color sensitive, used
under dark conditions, 120 millions in an human
eye, spread in different regions of the retina.

• Cones: color sensitive, used under high-light
viewing conditions, 6-7 millions in the human eye,
three types of cones which are specialized for
different frequencies, concentrated in the fovea.

In order to represent colors in a digital way we use mo-
dels like RGB (which are inspired by the three types of
cones). RGB is an additive method, but there are al-
so subtractive methods such as CMYK. Another manner
to represent color is the YCbCr which has a channel for
the luminance, another one for the blue-yellow deviation

from gray and a third one to the red-cyan deviation from
gray. This method is very useful to do compression.
Now we change a little bit perspective from the beginning
of the lecture and we imagine light as photons who travel
in straight lines and hit objects. The brightness of the
image is proportional to the energy of photons hitting
the object. We note the following important concepts:

• Radiant energy: number of total hits

• Radiant energy density: hits per area

• Radiant flux: number of total hits in one second

• Irradiance: number of hits per second per unit area

A camera has an array which measures the things we just
explained and then generates the image.
In order to understand the rendering equation we intro-
duce the concept of radiance L(p, ω), i.e. the energy per
unit time per area per solid angle along a ray defined by
origin point p and direction ω. On a surface the incident
radiance is not the same as the exitant radiance. This
quantity characterizes the distribution of light in an envi-
ronment and in general rendering is all about computing
radiance. Now we see the rendering equation:

L0(p, ω0) = Le(p, ω0) +

ˆ
H2

fr (p, ωi → ω0)Li(p, ωi) cos Θidωi

where:

• L0(p, ω0) is the observed radiance at the point of
interest in the direction of interest.

• Le(p, ω0) emitted radiance.

• fr (p, ωi → ω0) is the scattering function which in-
cludes information about the behaviour of the pho-
ton (in facts photons are not always just reflected
as in a mirror, but the photon may be reflected in
a lot of different ways).

• Li(p, ωi) cos Θi is the incoming radiance from
direction i.

the key challenge about this equation is that it is recur-
sive: to evaluate incoming radiance we have to compute
another integral.

Soel Micheletti

Ray tracing

In ray casting we shoot races from each one of the pixels
in the image plane through the pinhole. Since two points
define a line we can ask ourselves: which 3D geometry
are hit by this ray? Basically we shot rays from every
pixel and as soon as we hit an object we know how to
color a pixel. We have:

• Sample: a ray in 3D

• Coverage: does ray hit triangle (ray triangle
intersection tests)

• Occlusion: closest intersection along ray

Difference between rasterization and ray casting:

• Rasterization proceeds in triangle order; most pro-
cessing is based on 2D primitives; has a depth
buffer.

• Ray casting: proceeds in screen sample order;
no depth buffer; natural order for rendering
transparent surfaces; must store entire scene

Note that in general rasterization is more efficient.
Consider the problem of shading, if we use rasterization
we first render the depth buffer from the point of view
of the light source and then the image from the point
of view of the camera. If during the rendering from the
camera we encounter an object which is in the depth buf-
fer from the light source than this point will be brighter,
otherwise it will be in shadow. With ray tracing we hit
an object and then from the hit point we do a ray to-
wards the light source: if we don’t hit any other object
this point will be bright, otherwise a shadow. In general
with recursive ray tracing we keep in account all phy-
sics law about light (e.g. Snell’s law) and we modify the
image by using this information.
In general, in order to do ray tracing (but also other ope-
rations in computer graphics), we need to answer several
geometric queries:

• Closest point on 2D line: use orthogonal projection.

• Closest point on line segment: find closest point on
the line; if in segment then we are over, otherwise
return closest end point.

• Intersect ray with implicit surface: parametrize ray,
put this into implicit representation, solve for ray
parameter.

• Ray triangle intersection: compute ray-plane with
triangle intersection, calculate barycentric coordi-
nates of the point, if all coordinates positive then
hit, otherwise miss.

• Given a scene defined by set of N primitives and ray
r, find closest intersection point: naive is to iterate
through all points (very inefficient if we have tons
of points). An alternative is to group the objects
into groups and then hitting the ray with a simple
form (e.g. cube) that contains the group. In this
way we do a kind of binary search over the objects.

In order to do the partitioning we have two possibilities:

• Primitive partitioning (BVH): partition nodes
into disjoints sets (but sets may overlap in space).
How to do the partition? Give to each partition
the same number of primitives or minimize empty
space.

• Space partitioning (KD tree): partition space
into disjoint regions (but the same primitive bay be
contained in multiple regions of space. If the object
move primitive partitioning is better.

Intro to Animation

Until now we have seen different stages to create an image
(first we started with a simple cube man, then we learned
polygonal meshes and finally we talked about materials
and lighting). Now we want to do the next step: we don’t
want static figures but we want to represent objects in
motion.
A very important idea in animation is keyframing, i.e.
the fact that starting from some images we have to fill
the gaps in order to get the illusion of motion. The gaps
can be filled manually by an artist or automatically by a
computer. The idea is to specify important events only
and the computer fills the gaps via interpolation. Note
that events don’t have to be positions, but could also be

color, light intensity, camera configuration, ... Now we
dive into interpolation.
Interpolation: the idea is to connect the dots, e.g. with
a line. Using piecewise linear interpolation might not be
the best idea because we have a very rough and innatural
motion. In general, a spline is any piecewise polynomial
function. We have n tuples of the form (ti, fi) and we
want that for all i our interpolation function g has the
property that g(ti) = fi. For all points between ti and
ti+1 we want a polynomial of a given degree (e.g. degree
3 for cubic interpolation). Using too high degree polyno-
mials is not a good idea because the Runge’s phenome-
non can happen. Suppose that we want to use a cubic
polynomial to interpolate two end points. We have:

p(t) = at3 + bt2 + ct+ d

We have several possible solutions to interpolate the
points. A good idea to get the best possible polynomial
is to also match the derivatives at the end points.
If we have n points and we want to interpolate them we
use a different polynomial for every interval and we want
to match the end points and the first two derivatives.
The properties of a good spline are:

• Interpolation: spline passes exactly through data
points.

• Continuity: at least twice differentiable everywhe-
re.

• Locality: moving one control point does not affect
the whole curve.

Natural spline satisfies the first two conditions but not
the locality. There are also other kinds of interpolation
functions, e.g. Hermite Spline satisfy interpolation and
locality (but not continuity) and B-Splines, which satisfy
locality and continuity (but not interpolation).

Soel Micheletti

Physically-based Animation

We are concerned with non static scene and in order to
study this topics there are two branches of physics: ki-
nematic (which describes the movement) and dynamics
(which explain why objects move in relation to forces).
A very important equation in this context is the second
of law of Newton (i.e. the famous ~F = m~a). In compu-
ter graphics we say that every system has a configuration
q(t) and there are forces which act on this system. We
can write the Newton’s law as:

q̈ =
F

m

Often it is useful to describe systems with many moving
parts. For example one can consider a collection of bil-
liard balls, each with position xi and collect all the balls
into a single vector of generalized coordinates. Hence we
can think of this vector which contains all the positions
of the billiard balls as a single point which moves along
a trajectory in a very high dimensional space.
One can also write second order differential equations
with a system of first order differential equations, e.g.:{

q̇ = v

v̇ = F
m

In the physics courses we have seen different problems
which can be solved by hand, but in reality it can be
very difficult to solve differential equations and hence we
need computers and numerical methods to approach this
kind of problems.
In order to solve ODEs numerically we recall some
concepts of the course Numerical Methods for CSE :

• Solving ODEs numerically requires numerical time

integration of the form q(t + h) = q(t) +
´ t+h
t

q̇dt,
which can be done with discrete approximations of
the form qi+1 = qi + ∆qi. In order to approximate
∆qi we can use:

– Rectangle rule: ∆qi ≈ q̇(t) · h
– Midpoint rule: ∆qi ≈ q̇(t+ h

2) · h

– Trapezoid rule: ∆qi ≈ q̇(t)+q̇(t+h)
2

where those rule differ in accuracy and number of
function evaluations.

• Forward Euler: walk a little bit in the direction of
the derivative, easy but unstable.

• Backward Euler: instead of using velocity at the
current configuration, evaluate velocity at new con-
figuration. This is stable, but involves solving a
system of (maybe nonlinear) equations.

Soel Micheletti

