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Abstract

Since the initial sequencing of the human genome in 2001, the field
of systems biology has strived to understand gene regulatory mech-
anisms, in particular the role of transcription factor binding. This is
crucial to inform our understanding of diseases such as cancer: regula-
tory mechanisms are the primary alterations observed in tumors, and
they are extensively investigated for treatment and drug design, as well
as early detection. Despite the importance of discovering the underly-
ing regulatory mechanisms, the task of inferring them from data while
maintaining accuracy, explainability, scalability, and flexibility remains
a significant open challenge.

This thesis proposes GIRAFFE, a scalable matrix factorization-based al-
gorithm to jointly infer regulatory effects and transcription factor activ-
ities from gene expression data. GIRAFFE integrates prior knowledge
about regulation to guide the optimization, yielding an interpretable
model where regulatory weights are partial effects. Moreover, it can
be customized to the requirements of the downstream application by
adjusting for variables of interest, such as confounders, and adding
sparsity constraints, which help to interpret the regulatory network.

We demonstrate the effectiveness of this approach with extensive exper-
iments on synthetic, as well as real world data. Our algorithm outper-
forms state-of-the-art gene regulatory network inference methods in
predicting interactions between transcription factors and target genes.
Moreover, it is able to distinguish between activating and inhibitory
effects, yielding plausible results in downstream applications such as
gene set enrichment analysis.
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Chapter 1

Introduction

Cancer is a leading cause of premature death, with a huge burden in every
country of the world [Bray et al., 2018]. In 2020, there were an estimated
19.3 million new cancer patients, and almost 10 millions deaths worldwide
[Ferlay et al., 2021].

After the initial sequencing of the human genome [US DOE Joint Genome
Institute: Hawkins Trevor et al., 2001], data driven discovery has been a key
tool to better understand factors driving the development and progression of
cancer. Many studies have been conducted to understand how the genomic
characteristic of a tumor, its mutational background, and the patterns of
expressed genes can help alleviating the impact of cancer [Goldman et al.,
2020]. Successful examples of translating this knowledge into therapeutics
and diagnostics reinforce the potential of this approach, with the final goal
of making personalized cancer medicine possible [Chin et al., 2011].

A major factor for this success has been the development of high-throughput
sequencing technologies, enabling the collection of massive amount of data
containing a wealth of information about the disease. Extracting this infor-
mation from data leads to important insights for earlier detection and more
effective treatment, both of which are crucial steps towards improving both
the quality and quantity of cancer patients’ lives [Paraskevi, 2012].

In this thesis we focus on data-driven approaches to infer gene regulation,
a complex mechanism with many components. We focus on one of its key
factors, where a particular type of regulators called transcription factors
activate or inhibit the expression of their target genes. From a data science
perspective, the gene regulatory machinery can be represented as a network,
where nodes represent genes and transcription factors, while edges describe
their relationships. Our goal is inferring the edges in the network, i.e. the
(non-)existence of interactions between regulators and genes, and their en-
hancing or inhibitory nature.
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Despite the plethora of available data, the task of inferring regulatory inter-
actions remains challenging due to the high dimensionality 1 of the problem
and the noise present in the data. While estimation methods yielding ar-
guably accurate results exist, they suffer from one or multiple issues when
it comes to interpretability, scalability to the human genome, and flexibility.
For instance, state-of-the-art algorithms either do not distinguish between
enhancing and inhibitory regulation, or do not scale beyond a few hundreds
genes, therewith being inapplicable to the human genome. Moreover, not
all existing methods put emphasis on interpretability, for example by in-
corporating complex non-linear relationships that optimize predictions, but
that are incompatible with human reasoning, which is essential to ensure
safety, ethics, and accountability of models supporting oncology decisions
[Lu et al., 2023].

To overcome these issues, we propose GIRAFFE, a machine learning algo-
rithm to jointly infer a gene regulatory network describing transcription
factor-gene relationships, and a transcription factor availability matrix de-
scribing a sample-specific quantity of transcription factors available to reg-
ulate their targets. We aim for a model that is able to capture the relevant
biological details while still being simple enough to ensure a reasonable
interpretation. We, hence, use a matrix factorization that decomposes the
observed gene expression as the product of transcription factor activity and
regulatory network, leading to regulatory weights that can be interpreted
as partial effects of a linear regression model. In particular, activating/in-
hibitory regulatory effects correspond to a positive/negative sign in the in-
ferred regulatory network. Both the regulatory network and the transcrip-
tion factor activity matrix can be estimated with off-the-shelf optimizers,
helping GIRAFFE to efficiently scale to the entire human genome. To guide
the optimization of our problem, we integrate prior knowledge about regu-
lation. Including prior knowledge into the algorithm’s behaviour has been
shown to be beneficial both in theory and in practice [Greenfield et al., 2013,
Wolpert and Macready, 1997], and it helps to overcome the problem of un-
derdetermination, which is typical for biological applications of matrix fac-
torization. Finally, GIRAFFE is flexible as it can be customized to the require-
ments of a concrete application: the user can optionally adjust for variables
of interest and/or make the inferred regulatory matrix sparse.

To evaluate GIRAFFE’s accuracy, we compare its performance to competing
methods on both synthetic and real world datasets. To investigate its inter-
pretability beyond the regulatory weights being partial effects, we check the
consistency of the obtained sign, representing activating/inhibitory interac-
tions, against well-defined ground-truths in simulated data and in biologi-

1A high-dimensional dataset is one where the number of features is much larger than
the number of samples. In our case, we typically work with with 20 to 30 thousand genes
(features), and only a few hundreds samples.
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1.1. Research questions

cal applications. Moreover, we assess the plausibility of obtained results for
lung adenocarcinoma in graph differential analysis.

1.1 Research questions

We investigate if it is possible to improve the inference of gene regulatory
networks with respect to

(i) Interpretability, for instance by distinguishing enhancing from inhibitory
regulatory effects,

(ii) Scalability, by efficiently scale up to the human genome,

(iii) Flexibility, by adjusting for variables such as confounders,

(iv) Accuracy.

Importantly, we want to propose solutions that are not only algorith-
mically sound, but that also lead to valuable insights in a biological
context.

1.2 Contributions

• We propose GIRAFFE (Gene-level Inference of Regulatory effects As
Factorizations of Functions of Expressions), a novel algorithm to esti-
mate gene regulatory networks through a biologically informed matrix
factorization.

• We design extensive experiments in silico, yeast, and human datasets
to investigate GIRAFFE’s performance w.r.t. the goals (i)-(iv) outlined
in Section 1.1, demonstrating the superiority of our method over oth-
ers.

• Both our code and processed data are publicly available under MIT
license2, together with extensive documentation to simplify the use for
researchers without a computational biology background. We hope
that this will foster future work in the field.

• We open source two additional libraries that might be interesting for
the reader: grn-thresholding3 to sparsify dense networks, and
grn-stability-selection4 to apply feature selection in gene regu-
latory networks while controlling for false discovery rates with high
probability.

2https://github.com/soelmicheletti/giraffe
3https://github.com/soelmicheletti/grn-thresholding
4https://github.com/soelmicheletti/grn-stability-selection
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1.3. Structure of the thesis

1.3 Structure of the thesis

The thesis is organised as follows:

• In Chapter 2, we provide the necessary background required to under-
stand the rest of the thesis. First, we present a primer on the relevant
biological concepts. Then, we discuss graphs and why they are an
appropriate abstract data type to model gene regulatory mechanisms.
Finally, we describe the data we use and how they are collected.

• In Chapter 3, we give a succint overview of the lines of research most
relevant to ours.

• In Chapter 4, we present the details of our algorithm from a conceptual,
computational, and optimization perspective. First, we present our
linear model formulation. Then, we show how it can be framed as a
matrix factorization problem and optimized with established methods.
Finally, we discuss extensions to obtain sparse solutions and adjust for
variables of interest.

• In Chapter 5, we investigate our research questions in the context of
GIRAFFE. We benchmark on synthetic data where the ground-truth
is well-defined, and on human data with a gold standard. Then, we
evaluate the plausibility of conclusions obtained on established down-
stream applications.

• In Chapter 6, we critically discuss GIRAFFE’s performance and its con-
tributions to combining accuracy, interpretability, scalability, and flexi-
bility in gene regulatory networks inference.

Finally, we summarise the thesis and dicuss the avenues for future research
that this work opens.
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Chapter 2

Background and motivation

In this chapter we present relevant background to better understand the re-
mainder of the thesis. We provide a biological primer on gene regulation; an
introduction to biological networks and why they are appropriate to model
gene regulation; and an overview of the data we use and how they are
collected. Every section is self contained and independent from the others,
such that the reader should feel free to skip and solely focus on the specific
topics of interest.

2.1 Gene regulation

Each cell of the human body stores the whole genome in its nucleus. The
genome is the complete collection of heritable genetic information about
the organism, and can be modelled as long nucleotide sequences of DNA
composed by sequences of symbols from the four letter alphabet {T, C, G, A}.
Despite the fact that all cells share the same genetic material, the functions of
different types of cells can differ significantly: compare, for instance, nerve
and blood cells. The reason for this is that different cells express different
genes1, and the set of expressed genes ultimately determines their behaviour.
The mechanism turning genes on and off is called gene regulation, and is
essential not just to distinguish tissues from each other, but also because it
can make the difference between health and disease [Ballestar and Esteller,
2008]. We now present a simplified model of gene regulation that will be
useful to better understand the remainder of the thesis, and we refer the
curious reader to Latchman [2007] and Ptashne and Gann [2002] for detailed
biological explanations.

1For the purpose of this thesis, genes are stretches of DNA encoding some functionality:
either protein, or other classes of functional RNAs. Even if genes are incredibly important,
it is interesting to note how only a tiny fraction of DNA (approximately 3-5%) codes for
proteins.
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2.2. Biological networks

A version of the so called central dogma of molecular biology states that DNA
makes RNA, and RNA makes proteins. Even if the statement is known to be
wrong, a notable exception being the reverse transcription of viral RNA, this
simple principle helps us explaining the flow of genetic information within a
cell. During the process of transcription, an enzyme called RNA-polymerase
slides along the DNA, opens the double strand, and produces mRNA, a sin-
gle stranded ”copy” of a gene. mRNA then serves as blueprint for a complex
process that synthesize a protein as its final product. Particularly relevant
for our purposes is a special kind of proteins called transcription factors
(sometimes abbreviated TFs) that contribute, possibly by forming higher-
order protein complexes together with other TFs, to increase or decrease the
rate of transcription of a gene. More specifically, they bind to a motif in
the promoter region of the target gene, thereby facilitating or preventing the
RNA-polymerase to transcribe the gene into mRNA.

Note that the model described above is a useful simplification, but it is not
the full story. For example, it can happen that a protein is not produced
even if the gene associated with it is highly expressed in mRNA, or that
gene expression is not affected by transcription factors only, but also by
epigenetics, methylation, and environmental factors. As common in many
related studies, we make simplifying assumptions and focus on the interac-
tions between genes and transcription factors: genes produce TFs, TFs affect
gene expression such that new - possibly different - TFs are produced. This
interaction iteratively continues over time, determining the evolution of the
cell’s behaviour. This is particularly relevant to study cancer, as this process
is altered during its development and progression.

2.2 Biological networks

Networks are a powerful abstract data type, particularly convenient for the
depiction of relationships between entities. In general, a network or graph
G = (V, E) consists of a finite set of nodes V and a set of edges E ✓ V ⇥ V
connecting pairs of vertices. Hundreds of interesting computational prob-
lems are couched in terms of networks, with applications ranging from eco-
nomics to social sciences [Cormen et al., 2022]. Similarly, many biological
systems can be visualized using networks: nodes represent biologically rele-
vant elements, and edges describe their relationships.

To gain an intuition on why networks are a suitable tool to model the un-
derlying biology, let’s consider gene expression data as an example. A gene
expression dataset contains quantitative information about the expression
of G genes across n samples. Typically, two distinct datasets are collected:
the first one for healthy subjects, the second one for subjects with a partic-
ular type of cancer. A toy example is shown in Figure 2.1, where for each

6



2.2. Biological networks

Figure 2.1: Two toy gene expression datasets (on the left for healthy patients, on the right for
cancer patients). For the purpose of this example, a black entry means highly expressed, while
a white entry means lowly expressed.

gene-patient pair a black value indicates high expression, while a white
value indicates low expression. We see that there are differences between
the datasets: for instance, Gene A has the same expression profile as Gene
B on healthy patients, while on cancer patients is has the same expression
profile as Gene C. However, a summary statistics computed directly from the
gene expressions such as a gene-specific mean over the patients, is going to
miss these differences: in both datasets, each gene is highly expressed in
exactly two patients, and the mean expression for each dataset is the same
for both phenotypes. These differences are better captured by a network. In
this particular case, a gene co-expression network - where nodes represent
genes, and edges a proper measure of co-expression between pairs of genes
- can be very useful. In Figure 2.2 we show the corresponding co-expression
networks for both datasets: the first one for healthy patients, the second one
for cancer patients. We observe how, in contrast to simple statistics on gene
expression, networks are able to capture structural differences in the data,
with the potential of being more informative in biological applications such
as cancer medicine.

In order to extract knowledge from biological networks, two fundamentals
steps are necessary: network inference and network analysis. Networks infer-
ence refers to the task of recovering the unknown graph structure. Con-
cretely, this means recovering the edges and their weights. Since this is the
focus of this thesis, we do not discuss it further here. Network analysis, on
the other hand, refers to the set of methods used to gain knowledge from the
inferred networks. Classical approaches from the network analysis literature
include hubs detection, modules identification, triad census, interpretation
of hierarchical structures, centrality, and adherence to models such as core-

7



2.3. Data

C D

A B

C D

A B

Figure 2.2: Network models for the gene expression datasets from Figure 2.1 (on the left the
network for healthy patients, on the right the network for cancer patients). Edges represent
co-expression between genes. For instance, since Gene A and Gene B shared the same expression
profile on healthy patients, and hence are linked by an edge in the corresponding network.

periphery or threshold graphs [Brandes, 2005]. More modern comparative
approaches, similar in spirit to the previous toy example, have been used
to investigate evolutionary mechanisms [Crombach and Hogeweg, 2008], or-
gan differentiation [Movahedi et al., 2011], and cancer [West et al., 2012, Gill
et al., 2014, Li et al., 2016, Lopes-Ramos et al., 2020].

Network inference and analysis are mutually dependent: a great analysis
is useless without a sufficiently good inference algorithm, and being able
to recover the true structure is of limited utility if no valuable information
can be extracted from it. Or, as a motivation for our work, higher-quality
networks open up more opportunities to learn about the underlying biology.

2.3 Data

Our model integrates three types of data: gene expression, protein-protein
interactions (sometimes abbreviated PPI), and a motif-based transcription
factor-gene interaction prior. Moreover, we use ChIP-seq data as a gold
standard in our validation experiments. In this section we aim to give a
brief overview of these data and how they are collected.

Gene expression, measured individually for each sample across all genes
and gathered in projects such as GTEx [Consortium et al., 2015] and TCGA
[Gao et al., 2019], provides a quantitative profile about the information en-
coded in a gene that gets translated into functional products, such as mRNA.
Originally measured with techniques based on nucleic acid hybridization
such as microarrays [Schena et al., 1995] and SAGE [Velculescu et al., 1995],
nowadays RNA-seq has settled as a standard, yielding higher throughput,
better resolution, and lower noise [Wang et al., 2009]. In this work we use
bulk RNA-seq, measuring the average across multiple cells within a tissue.

8



2.3. Data

A PPI network is an undirected graph providing mechanistic insights into
the interactions between transcription factors, for instance towards build-
ing higher-order protein complexes. Commonly used techniques, such as
yeast two-hybrid [Van Criekinge and Beyaert, 1999] and affinity purifica-
tion followed by mass spectrometry [Huttlin et al., 2021], apply markers in
experimental setting that report detected interactions between pairs of pro-
teins. Even it this does not necessarily yield perfectly accurate results, for
instance because the experimental environment does not match the tissue
under study, we incorporate known interactions from the String database
[Szklarczyk et al., 2016] as prior knowledge.

Even if our algorithm is agnostic to the choice of the prior regulatory net-
work, we often use a binary network with an edge between TF i and gene
j if and only if the motif of TF i is detected in the promoter regions of
gene j. These networks are built using the FIMO scanning tool [Grant et al.,
2011] starting from sequences of promoter regions and a database of position
weight matrices associating each TF to a set of motifs. While the presence
of a transcription factor’s motif in the promoter of a gene suggest that it
is involved in its regulation, this is not necessarily true, as not all binding
sites are active, and the binding of a single transcription factor might not be
sufficient if the regulation happens cooperatively in a protein complex.

ChIP-seq is a more reliable technique. Instead of relying on the presence of
a motif in the promoter region, it experimentally measures physical interac-
tions between transcription factors and genes using chromatine immunopre-
cipitation [Park, 2009]. Whenever they are not used as validation, ChIP-seq
data can be used as prior knowledge for our algorithm, as they provides
more accurate information about the regulatory effects we aim to estimate.

9



Chapter 3

Related Work

Unveiling gene regulatory mechanisms is an essential task in systems biol-
ogy, with the potential of informing our understanding of cellular processes
and how they get altered by diseases such as cancer. Studied approaches to
reverse engineer the structure of gene regulation include Boolean networks
[Huang, 1999, Lim et al., 2016, Akutsu et al., 1999, Lähdesmäki et al., 2003],
differential equation models [Sakamoto and Iba, 2001, De Hoon et al., 2002,
Hossain et al., 2023], image-based methods [Puniyani and Xing, 2013, Wu
et al., 2016, Yang et al., 2019], and deep learning architectures [Shrivastava
et al., 2022, Kasabov, 2004, Chen et al., 2021, Kc et al., 2019]. In this chapter
we aim to give a succinct overview of the lines of research most relevant to
ours, and refer the interested reader to Mercatelli et al. [2020] for a compre-
hensive review.

Perhaps the most widely studied approach to understand gene regulatory
mechanisms is to investigate the associations of genes through a gene co-
expression network. It is defined as a network C 2 RG⇥G representing
undirected relationships between G genes of interest, and it’s typically com-
puted starting from a gene expression matrix measured from n samples.
The interpretation of the entries in C heavily depends on the chosen mea-
sure of association between gene expressions. The simplest score that one
may associate to a pair of vector-valued measurements is their correlation.
WGCNA [Langfelder and Horvath, 2008], a widely established correlation-
based method, is able to find modules of highly correlated genes. While
being efficient to implement, correlation networks suffer from a major limi-
tation: it is impossible to distinguish direct from indirect effects, and there
is often a large number of false positives [Drakesmith et al., 2015]. Con-
sider, for example, a situation where a transcription factor A regulates the
expression of two otherwise independent genes B and C. In this case the
correlation of B and C is non-zero, and hence the corresponding network
will contain an edge between B and C. The relationship between B and

10



C, however, is only a consequence of their mutual relationship with the
transcription factor A, and thus the inferred edge represents an indirect as-
sociation. This phenomenon of two uncorrelated variables having a large
correlation coefficient, sometimes summarised by the term spurious correla-
tion [Aldrich, 1995], is often caused by confounding. A straight-forward ap-
proach to mitigate the issue of confounding is relying on Gaussian graphical
models (GGMs), where edges represent partial correlations [Bühlmann and
Van De Geer, 2011]. Intuitively, the partial correlation between two variables
measures their correlation while accounting for the effects of the remaining
variables in the data set. Assuming causal sufficiency, partial correlation is
hence able to distinguish direct relationships between genes from those me-
diated by one or more transcription factors [Shutta et al., 2021]. While GGM
are certainly a success story, their major drawback is assuming both normal-
ity of the data and linear relationships between genes. Information theoretic
methods try to overcome this by using scores such as mutual information
[Faith et al., 2007, Meyer et al., 2007]. While mutual information can acco-
momdate non-linear associations, it does not directly account for confound-
ing and it can hence introduce spurious correlations. Mitigations based on
the data processing inequality [Margolin et al., 2006], conditional mutual in-
formation [Liang and Wang, 2008, Aghdam et al., 2015, Zhang et al., 2012],
or Markov blanket discovery [Liu et al., 2022, Ram and Chetty, 2009] have
been explored. These methods might reduce the number of false positives,
but their high computational burden prevents them to scale up to thousands
of genes, therewith making them inapplicable to high-dimensional datasets
such as the human genome [Sanguinetti et al., 2019]. More scalable ap-
proaches to incorporate non-linearity exploit (ensembles of) decision trees
as feature selectors [Huynh-Thu et al., 2010, Petralia et al., 2015], support
vector machines [Bruschi et al., 2022], and kernel based methods [Kontio
et al., 2020, Iglesias-Martinez et al., 2021].

It is worth noting that regardless how they are computed, gene co-expression
networks measure associations between genes, but do not necessarily imply
causal relationships. In contrast, Gene Regulatory Networks (GRNs) have
a higher potential when it comes to understand regulatory mechanisms.
GRNs are bipartite graphs whose nodes are regulators and genes, and a
directed regulator-gene edge indicates a direct relationship between them1.
Thus, by definition, there is a causal relation from regulators to their target
genes. Different approaches to construct GRNs have been proposed: MON-
STER [Schlauch et al., 2017] is based on linear regression, TIGRESS [Haury
et al., 2012] applies an `1-norm regularizer for feature selection, Wang et al.
[2020] propose a solution based on Graph Neural Networks, and Patel and

1The term GRN has been used somehow ambiguously in the literature, sometimes even
to refer to gene co-expression networks. For the scope of this thesis, we will stick to the
bipartite definition.
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Wang [2015] propose a semi-supervised learning framework generalizable
to any classifier. All these algorithms consider transcription factors as reg-
ulators, and make the simplifying assumption that the gene expression of
a transcription factor is a reliable surrogate for its activity. However, this is
not true in general [Ma and Brent, 2021, Latchman, 1993]. Other methods
avoid this issue by modeling regulation without explicitly considering tran-
scription factor activity. PANDA [Glass et al., 2013] is an iterative algorithm
inspired by message passing techniques that updates a protein-protein net-
work, a co-expression network, and a regulation network until they reach
an agreement. OTTER [Weighill et al., 2021] infers the GRN by solving a
non-convex optimization problem, starting from the fundamental premise
that the interactions between transcription factors, and the correlation be-
tween genes are noisy observations of the regulation matrix’s projections.
Both methods incorporate the same sources of prior knowledge - i.e. known
protein-protein interactions and a motif-based prior - in similar ways, and
they are the main inspiration for our work. We aim to improve their per-
formance, as well as their interpretability, by additionally distinguishing
enhancing form inhibitory regulation.

Recently, computational algorithms to infer both gene regulatory networks
and transcription factor activity have emerged. In many cases, gene regu-
lation and transcription factor activities are estimated using alternate opti-
mization. Explored solutions include network component analysis [Fu et al.,
2011], multi-task learning to combine heterogeneous datasets [Castro et al.,
2019], bilinear models [Ma and Brent, 2021], and variational inference [Mah-
mood et al., 2022]. While these methods provide interesting insights on how
to integrate prior knowledge, they have not been validated on human data.
TIGER [Chen and Padi, 2022] and BITFAM [Gao et al., 2021] estimate reg-
ulation and transcription factor activity jointly using a Bayesian approach.
The main goal of both methods is accurately estimating transcription factor
activities, and they validate their results extensively in downstream appli-
cations. However, they have multiple common limitations. First, they both
impose a Gaussian distribution for the posterior of the regulatory weights,
which turns out to be a very strong assumption in many practical applica-
tions [Mar, 2019, Glass et al., 2013]. Second, they both neglect interactions
between transcription factors. Incorporating known protein-protein interac-
tion simplifies the inference process, and relying solely on expression and
a regulatory prior potentially increases the risk of missing true regulatory
interactions. Third, they are both computationally intense when applied
to the human genome. Moreover, BITFAM does not distinguish between
enhancing and inhibitory effects.

12



Chapter 4

Our Method

In this chapter we present GIRAFFE (Gene-level Inference of Regulatory
effects As Factorizations of Functions of Expressions), our algorithm to esti-
mate GRNs. We aim to incorporate different sources of prior knowledge to
jointly estimate a GRN and sample-specific transcription factor activities in
an interpretable and flexible manner. As shown in Figure 4.1, we decompose
the observed gene expression into latent factors represeting a GRN R, and
a non-negative transcription factor activity matrix TFA. R contains informa-
tion about intensity and nature of the relationships between TF and genes,
while TFA describes the amount of proteins available to regulate their tar-
get genes. These latent factors are useful to inform our understanding of
biology, but are expensive to measure with current technologies and are typ-
ically estimated computationally. In Section 4.1 we introduce the abstract
model of the gene regulation machinery, in Section 4.2 we present our ma-
trix factorization approach to identify a good such model, and in Section 4.3
we show two extensions to adjust for variables of interest and obtain sparse
solutions.

4.1 Model

We model the gene regulation machinery as a graph N = (V, E) consisting
of a finite set of nodes V = G ] TF and a set of edges E ✓ V ⇥ V. G is the
set of genes, while TF is the set of transcription factors. We use |G| and |TF|
to denote their cardinalities. There are two categories of edges: undirected
edges connecting pairs of transcription factors, and directed edges connect-
ing transcription factors (sources) to genes (targets). TF-TF edges represent
interactions towards forming higher-order protein complexes, and are in-
tegrated as prior knowledge to learn the regulatory interactions between
transcription factors and genes. An abstract representation of our model is
depicted in Figure 4.2.
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4.1. Model

Figure 4.1: Schematic overview of GIRAFFE. Given gene expression, a prior R0, and PPI,
GIRAFFE computes a regulation matrix R and a transcription factor activity matrix TFA via a
biologically informed matrix factorization.

TF 1 TF 2 TF 3

G 3G 2G 1 G 4 G 5

Figure 4.2: Abstract representation of the gene regulation machinery. The dashed edges between
transcription factors represent protein protein interactions and are given as prior knowledge. We
estimate the regulatory interactions as directed edges from transcription factors to genes.
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4.1. Model

We model the relationship between each gene and the transcription factor
activities using a linear model:

Yi =
|TF|

Â
k=1

bi,k · TFAk, (4.1)

where Yi 2 Rn is the expression of gene i across n samples, and TFAk 2 Rn is
the sample-specific activity of transcription factor k. Transcription factor ac-
tivity is modeled for each sample because it incorporates the sample-specific
environmental and epigenetic effects that influence transcription factor avail-
ability. Inferring the gene regulatory network is equivalent to inferring the
coefficients bi,k for all i 2 G and k 2 TF, which can be done by solving
|G| linear regressions ”in parallel”. Note that not only the regression coef-
ficients must be inferred, but also the predictors TFAk for k 2 [|TF|]. The
reason for this is that current technologies to measure transcription factor
activity do not scale up to our setting , and using the mRNA expression of a
transcription factor as a surrogate does not correctly model the complexity
of the protein synthesis mechanism [Ma and Brent, 2021, Latchman, 1993]1.
In Figure 4.3 we show how the abstract representation of Figure 4.2 relates
to our notation.

TFA1 TFA2 TFA3

Y3Y2Y1 Y4 Y5

b 1,2 b 2,2

b
3,2

b
4,2

b5,2

Figure 4.3: Link between the abstract representation of the model in Figure 4.2 and Equation
4.1. The expression of gene i, denoted Yi 2 Rn, is modeled as a linear combination of the
transcription factor activities of its regulators. bi,k denotes the contribution of TF k to the
expression of gene i. The figure explicitly shows the notation for TF 2, which can be extended
naturally for the dashed TFs.

From Equation 4.1, we observe that bi,k is the regression coefficient for the
regulation between transcription factor k and gene i. For this reason, the
weights computed by GIRAFFE can conveniently be interpreted as partial
effects. We chose this design because it is able to correctly capture the emer-

1While this can be acknowledged as a known fact, in Appendix B.1 we present our own
experiment to support this claim.
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4.2. Matrix factorization

gent biological behavior while still being simple enough to ensure a reason-
able interpretation. Importantly, it distinguishes activating regulation (pos-
itive regression coefficient) from inhibitory regulation (negative regression
coefficient).

4.2 Matrix factorization

GIRAFFE jointly estimates a GRN and a transcription factor activity matrix
through a biologically informed matrix factorization. More precisely, we
decompose the gene expression matrix Y 2 R|G|⇥n into the product of two
matrices: a regulation matrix R 2 R|G|⇥|TF|, and a non-negative transcription
factor activity matrix TFA 2 R

|TF|⇥n
+ . The setting is depicted in Figure 4.4.

Figure 4.4: Visual representation of our matrix factorization. Given a gene expression matrix
Y 2 R|G|⇥n, we decompose it as the matrix product between a regulation matrix

R 2 R|G|⇥|TF| and a non-negative transcription factor activity matrix TFA 2 R
|TF|⇥n
+

In the example from Figure 4.3, the matrix formulation looks as follows:

2

4 Y1 Y2 . . . Y5

3

5 ⇡

2

66664

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3
b4,1 b4,2 b4,3
b5,1 b5,2 b5,3

3

77775
·

2

4
TFA1
TFA2
TFA3

3

5 .

In the example above, as well as in most practical settings, the number of
transcription factors TF is larger than the number of samples n. This yield
an underdetermined matrix factorization problem with an infinite number
of solutions. For instance, one could set TFA to be a padded identity matrix,
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4.2. Matrix factorization

and R to be a padded copy of the gene expression. This solution would ex-
actly reconstruct the gene expression, but it would not correctly capture the
underlying biology. As a consequence, we face a model selection problem
and we rely on additional prior knowledge to make an informed decision.

GIRAFFE solves the problem by adding two sources of biological informa-
tion to the matrix factorization: a prior for the regulatory networks R0 2

R|G|⇥|TF|, and a binary undirected graph P 2 {0, 1}|TF|⇥|TF| representing
known interactions between transcription factors. We are context agnostic
for the prior, but in most cases we use a motif-based binary prior, where
an edge connects a transcription factor to a gene if the sequence motif of
the TF is present in the transcription factor binding site of the gene. More
concretely, GIRAFFE solves the following optimization problem:

arg min
R2R|G|⇥TF ,TFA2R

|TF|⇥n
+

f (R, TFA) :=a||Y � R · TFA||
2
F

+ b||RT
· R � P||2F

+ g||R · RT
� C(Y)||2F

+ d||TFA · TFAT
� P||2

+ l||R||22,

(4.2)

where || · ||F is the Frobenius norm, and C(Y) is the correlation matrix of
gene expression. Y ⇡ R · TFA minimizes the reconstruction error, RT · R ⇡ P
is an incentive for interacting proteins to target the same genes, R · RT ⇡

C(Y) encourages correlated genes to have similar interactions with tran-
scription factors, TFA · TFAT ⇡ P yields more similar transcription factor
activities for interacting proteins. The final term is used to regularize the
solution by shrinking the regulation coefficients. R and TFA are estimated
by minimizing f (R, TFA). Since the problem is non-convex, we resort to
gradient-based methods. Gradients can be found both analytically or nu-
merically using a suitable tool. For all practical applications, we use the
Adam optimizer [Kingma and Ba, 2014] implemented in Pytorch. The prior
R0 is used as initialization for R, while TFA is randomly initialized from
U (0, 1).

The objective function in 4.2 is a linear combination of different components,
where the weight of each components a, b, g, d should be picked according
to two criteria: first, they shall moderate the influence of every component
in a meaningful way, addressing the underlying trade-off; second, they shall
satisfy all objects to a certain degree. The latter criterion is particularly chal-
lenging when the single components lie on different scales, e.g. when a
single loss is of many order of magnitudes larger than the other ones. The
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4.3. Controlling network sparsity and adjusting

problem of balancing multiple loss functions that potentially lie on differ-
ent scales is a well studied problem in the multi-task learning field, as many
problems in engineering, natural sciences, and economics can be formulated
analogously [Awad et al., 2015]. Most approaches for unsupervised learning
problems can be classified into two broad categories: incorporating gradient
statistics [Malkiel and Wolf, 2020, Chen et al., 2018], and loss rebalancing
[Bischof and Kraus, 2021, Fernando and Tsokos, 2021, Liu et al., 2021]. In-
spired by the insights of Lee and Kim [2020] in the context of monocular
depth estimation, we suggest a rebalancing approach. More concretely, we
set k =

Ât2{a,b,g,d} t·I[t 6=k]

Ât2{a,b,g,d} t for k 2 {a, b, g, d}. Finally, l is left as a hyperparam-
eter, with a default value of one. We show that this approach works well
in a variety of scenarios, and hence we use it as default behaviour in our
algorithm. In principle, however, GIRAFFE is agnostic to this choice. For
this reason, we made our implementation fully customizable: the user can
either provide a custom function to pick the weights at runtime, or even
fixed scalar weights if desired.

4.3 Controlling network sparsity and adjusting

In this section, we present two additional features to fine tune GIRAFFE’s
predictions: sparsity, and adjusting for variables of interest.

A first observation is that optimizing GIRAFFE’s objective as formulated
in Equation 4.2 leads to a dense regulation matrix R. In particular, follow-
ing our interpretation in terms of partial effects, all transcription factors are
included in the set of parents of a target gene. This contrasts our under-
standing of the underlying biology, as we expect most transcription factors
to target only a subset of genes [Wang et al., 2015]. While this is not an is-
sue in many applications, where the identification of the regulators is done
either implicitly [Lopes-Ramos et al., 2020, Van Dam et al., 2018] or in a post-
processing step [Han and Zhu, 2008, Cassan et al., 2021], obtaining a sparse
regulation matrix is desirable in applications where a correct identification
of the regulators is essential. Moreover, sparse networks have advantages in
terms of interpretability. To obtain a sparse regulatory network, we regular-
ize f (R, TFA) with the `1-norm by solving

g(R, TFA) := arg min
R2R|G|⇥TF ,TFA2R

|TF|⇥n
+

f (R, TFA) + l1||R||1, (4.3)

which leads to a sparse regulation matrix because of the geometric prop-
erties of the `1-norm [Tibshirani, 1996]. Since use gradient-based methods,
however, directly optimizing g using Adam does not automatically lead to
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4.3. Controlling network sparsity and adjusting

a sparse solution. Instead, we exploit the fact that the `1-norm is proximal
friendly, and adapt ideas from proximal gradient descent [Chen et al., 2012]
to our context 2. See Appendix A.1 for a self-contained explanation of our so-
lution. The tuning of the sparsity regularization parameter l1 is inherently
challenging: on the one hand we want to select all true edges, on the other
hand we do not want to include too many extra edges (false positives). We
advocate a choice that is conservative enough to select all non-zero entries of
R. This property is known as variable screening, and it has been shown to be
achievable with high probability by the Lasso [Meinshausen and Bühlmann,
2006]. To control the number of false positives, Meinshausen and Bühlmann
[2010] propose stability selection, a framework to select the most relevant
edges. We provide the details in Appendix A.2.

The second additional feature allows the user to adjust for variables of inter-
est. These include the patients’ phenotypes that are believed to confound or
bias the relationship between transcription factors and genes. To adjust for
Z 2 Rk⇥n, where k is the number of variables to be taken into account, we
modify the objective in Equation 4.2 as follows.

arg min
R2R|G|⇥TF ,TFA2R

|TF|⇥n
+ ,Q2R|G|⇥k

f (R, TFA) :=a||Y �
⇥
R Q

⇤
·


TFA

Z

�
||

2
F

+ b||RT
· R � P||2F

+ g||R · RT
� C(Y)||2F

+ d||TFA · TFAT
� P||2F

+ l||
⇥
R Q

⇤
||

2
2.

(4.4)

Note that we have to learn an additional parameter Q that quantifies the
partial effect of each variable on gene expression. Adjusting for variables
can be naturally combined with Equation 4.3 to obtain sparse solutions.

2The proximal operator of a function is a mathematical operator that maps a point to
its nearest point in the function’s domain that minimizes the sum of the function and a
weighted penalty term. When we say that the `1-norm is proximal friendly, we mean that its
proximal operator can be computed efficiently.
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4.4. GIRAFFE in Python

4.4 GIRAFFE in Python

All described characteristics can be defined and customized using the fol-
lowing code snippet:

model = giraffe.Giraffe(

expression ,

prior ,

ppi ,

adjusting = None ,

regularization = 0,

iterations = 200,

lr = 1e-5,

lam = None ,

balance_fn = None ,

save_computation = False ,

seed = 42

)

Listing 4.1: Instance of a GIRAFFE’s model in Python.

GIRAFFE is instantiated from an expression matrix Y, a prior R0, and a PPI
network P. The optional adjusting attribute is a real matrix of dimension-
ality k ⇥ n, where k is the number of variables to be adjusted. The attribute
regularization is the value of the l1 parameter in Equation 4.3, while
iterations and lr define the number of Adam iterations and its learn-
ing rate. To customize the choice of the weights a, b, g, d in Equation 4.2,
lam and balance fn can be used: lam is used to pick fixed scalar weights,
while balance fn is a user-defined function that is applied at every itera-
tion to dynamically update the weights based on the loss values. When
save computation is set to True, the parameter g in Equation 4.2 is set to
zero. This speeds up computations on large datasets and is very useful for
prototyping.

This wraps-up the presentation of GIRAFFE, our algorithm to jointly infer
a GRN and a transcription factor activity matrix. We presented the model,
our matrix factorization approach, and extensions to achieve sparsity and to
adjust for variables of interest. In the remainder of the thesis, we evaluate
its performance with extensive experiments in a variety of contexts.
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Chapter 5

Experiments

In Chapter 4 we presented GIRAFFE, our algorithm to jointly infer a gene
regulatory network and a transcription factor activity matrix. We now as-
sess our method through extensive validation using both experimental and
in silico data. We investigate the quality of the inferred transcription factor
activity and regulatory matrix (in the latter case not only the correctness
of the identified TF-gene interactions, but also their activating/inhibiting
nature), the ability to recover sparse results, the convenience of adjusting
for variables of interest, and the biological plausibility of results obtained
by applying GIRAFFE in downstream applications. Table 5.1 provides an
overview of our validation techniques, their goals, and the selected bench-
marks.
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Quality of R̂
Enhancing vs

inhibitory reg-

ulation

ˆTFA valida-

tion
Sparsity Adjusting

Downstream

application
Benchmarks

In silico
experi-
ment I,
Section
5.1

AUROC
with known
ground-truth.

Accuracy
with known
ground-truth.

Gene ex-
pression
reconstruc-
tion and
identifiabil-
ity.

AUROC be-
tween edge
relevance
and ground-
truth.

AUROC
with hidden
variable,
confounder,
and causal
sufficiency.

PANDA,
OTTER,
and prior.

In silico
experi-
ment II,
Section
5.2

AUROC
with known
ground-truth.

AUROC
with known
ground-truth.

Relative er-
ror of gene
expression
recon-
struction,
absolute
error with
ground-
truth.

AUROC be-
tween edge
relevance
and ground-
truth.

PANDA,
OTTER,
and prior.

Yeast
data,
Section
5.3

AUROC with
ChIP-seq data.

Ranks in in-
terventional
dataset.

PANDA,
OTTER,
and motif-
based prior.

Human
data,
Section
5.4

AUROC with
ChIP-seq data.

Adjusting
for ischemic
time.

PANDA,
OTTER,
TIGRESS,
BITFAM,
GENIE3,
and motif-
based prior.

Oncogenes
and tu-
mor
sup-
pressor
genes,
Section
5.5

.

Identification
of impor-
tant genes
in cancer.

COSMIC.

Sex dif-
ferences
in lung
adeno-
carci-
noma,
Section
5.6

.

Plausibility
of findings
in differen-
tial analysis.

Literature
on sex dif-
ferences in
lung cancer,
PANDA.

Table 5.1: Overview of used metrics to evaluate di↵erent aspects of GIRAFFE throughout our
experiments.
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5.1. Simulation I

5.1 Simulation I

To investigate the performance of GIRAFFE when our assumptions are met
and ground-truth is well-defined, we create synthetic data. We consider n =
50 samples for G = 500 genes regulated by TF = 100 transcription factors,
therewith being both time-efficient and realistic by matching the ordering of
a typical human dataset. We need to generate the ground-truth regulation
matrix R 2 RG⇥TF and transcription factor activity TFA 2 RTF⇥n, as well as
GIRAFFE’s inputs PPI network P 2 {0, 1}TF⇥TF, gene expression Y 2 RG⇥n,
and prior R0 2 {0, 1}G⇥TF. To generate Y, we need the ground-truth R
and TFA, both of which are derived from P. The prior R0 is obtained by
corrupting R. Figure 5.1 shows our pipeline highlighting the relationships
between the data.

Figure 5.1: Generation pipeline for ground-truth and GIRAFFE’s inputs.

The starting block of our pipeline is the PPI network P, that we generate
using an Erdos-Rényi model with interaction probability estimated as the
mean degree from the STRING database on human data [Szklarczyk et al.,
2016]. This ensures that the generated PPI has a similar topology as in
human datasets. To simulate the behaviour of transcription factors binding
into higher-order protein complexes and jointly affecting the transcription
rate of a gene, we compute cliques on the generated PPI, and assign a protein
complex to each clique. If a protein has no neighbours in the PPI network,
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5.1. Simulation I

we assign it to its own clique of size one.

Based on our matrix factorization model, we generate the gene expression
Y = R · TFA. To get R and TFA we rely on the protein complexes (or
cliques) in P. The intuition is to first generate the regulatory interactions
and activities for each protein complex, and then to extend them to the sin-
gle transcription factors. More precisely, letting K be the set of cliques in P
representing the protein complexes, we generate for each k 2 K a sample-
specific activity Ak 2 Rn, and a regulatory vector Ik 2 RG. The entries
of Ak are i.i.d. samples from U (0, 1), and Ik is a sparse vector, where the
non-zero entries are drawn i.i.d. from U (� 1

2 , 1
2 ). Sparsity is important be-

cause we assume that a protein complex regulates only a subset of the genes,
and the vectors can have negative entries to incorporate potential inhibitory
regulations. For each transcription factor i 2 [TF], we then generate the cor-
responding column/row in R and TFA by summing over the correct cliques
as follows:

TFAi,: = Â
k2K

AT
k · I [i 2 k]

R:,i = Â
k2K

Ik · I [i 2 k]

Finally, we compute the binary prior R0 from the regulation matrix R in two
steps: first, we map all non-zero entries of R to one, therewith getting a ma-
trix describing which TF-gene pair have a regulatory relationship. Second,
since motif-based TF binding scores are not a perfect proxy for regulation,
we flip some entries of W.

5.1.1 Results

Now that we introduced the data generating process, we present our exper-
iments and results.

Quality of inferred regulatory matrix To test the performance and robust-
ness of GIRAFFE, we consider the Area Under the Receiver Operating Char-
acteristics (AUROC) scores over a multitude of motif reliability settings,
where the number of flipped entries is gradually increased. We average
the results over B = 50 runs to show the stability of our conclusions, where
the randomness originates from the data generating process.
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5.1. Simulation I

Method
AUROC GIRAFFE OTTER PANDA Prior

Prior reliability: 99% 0.997±0.002 0.997±0.002 0.845±0.005 0.990±0.000
Prior reliability: 90% 0.967±0.001 0.960±0.001 0.845±0.001 0.900±0.000
Prior reliability: 80% 0.930±0.001 0.910±0.001 0.845±0.001 0.800±0.000
Prior reliability: 70% 0.871±0.001 0.839±0.001 0.844±0.001 0.700±0.000
Prior reliability: 60% 0.781±0.002 0.723±0.002 0.843±0.001 0.600±0.000
Prior reliability: 50% 0.581±0.004 0.466±0.005 0.500±0.030 0.500±0.000

Table 5.2: Comparison of AUROC score of the GRNs inferred by GIRAFFE, OTTER, PANDA,
and the prior. The score are averaged over B = 50 runs, and we report the standard deviation.

From table 5.2 we clearly observe that GIRAFFE outperforms OTTER, PANDA,
and the prior in terms of AUROC across most settings. The only exception
is PANDA performing better (AUROC=0.843) when 40% of the prior matrix
entries are flipped. Generally, the accuracy of the inferred GRN is larger for
more accurate priors.

Distinguishing enhancing from inhibitory interactions To estimate the abil-
ity to distinguish between activating and inhibitory interactions, we com-
pute the sign accuracy, defined as

1
G · TF Â

i,j
I
⇥
(R̂i,j · Ri,j) = 1

⇤
,

where R̂ is the GRN inferred by GIRAFFE. Similarly as before, we repeat the
experiment B = 50 times.

Figure 5.2: Sign accuracy of R̂. The black line shows the mean over B = 50 runs, and the gray
area is within one standard deviation from the mean.

Figure B.3 shows that, considering mean and standard deviation, the sign
accuracy is consistently greater than 66%
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5.1. Simulation I

Quality of inferred transcription factor activities To assess ˆTFA we pro-
pose two metrics: the relative error of the gene expression reconstruction
error,

E
⇥
Y � Ŷ

⇤

E [Y]
, with Ŷ := R̂ · ˆTFA,

and the relative value of the identifiability error

E
⇥
TFA � ˆTFA

⇤

E [TFA]
.

Figure 5.3: Gene expression reconstruction error and identifiability error for the estimated ˆTFA.

Figure 5.3 shows the trend of both metrics for different noise settings. We
observe that the reconstruction error is much lower (around 1%) than the
identifiability error (ranging from 15 � 30%). Moreover, the identifiability
error drastically increases when the prior becomes less reliable.

Sparsity Figure 5.4 shows ROC curves for the accuracy of the estimated
active set of R. The ROC curves are obtained by comparing the relevance
assigned to each edge, evaluated as the number of times the edge was se-
lected over B = 1000 runs with different values for the `1 regularization
hyperparameter, with the ground-truth value of R, where non-zero edges
are mapped to one. We observe that GIRAFFE’s ability to recover the active
set of edges heavily relies on the quality of the prior, ranging from an AU-
ROC of 0.99 for an almost perfect prior, down to only slightly better than
random for a prior where 50% of edges are corrupted.
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5.1. Simulation I

Figure 5.4: ROC curves for the accuracy of edges’ relevance against the corresponding entry
of R being non-zero. Edge relevance is computed by averaging how many times it was selected
over B = 1000 runs with di↵erent values of l1 in Equation 4.3. R̂ has been computed with a
binary motif.

Adjusting Finally, we test GIRAFFE’s feature to adjust for variables of inter-
est. We hence modify the generating mechanism with a random Gaussian
variable with mean zero and standard deviation one as follows: we add
an additive biasing variable (Figure 5.5), a hidden confounder (Figure 5.6),
and an hidden variable affecting the transcription factor activity only (Fig-
ure 5.7). For all settings, we compare GIRAFFE’s vanilla version to both the
correct model (without hidden variable) and GIRAFFE when adjusting for
the hidden variable. Figures 5.9-5.11 show the corresponding ROC curves.
We observe that adjusting for the hidden variable increases the score of GI-
RAFFE from 0.864 to 0.894 in case of a hidden variable, and from 0.873 to
0.890 for the confounding case. In both scenarios, the score gets closer to
the score obtained with the correct model (0.906 in both cases). When we
consider a generative model as in Figure 5.6, the scores do not change. Note
that this last case corresponds to causal sufficiency, as we only perturbate
the data generating process of the transcription factor activities.

Additional details and results to assess the robustness of our results can be
found in Appendix B.2.
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Figure 5.5: Hidden additive biasing variable. Figure 5.6: Hidden confounding variable

Figure 5.7: Hidden variable a↵ecting transcrip-
tion factor only.

Figure 5.8: ROC curves for Figure 5.5. Figure 5.9: ROC curves for Figure 5.6

Figure 5.10: ROC curves for Figure 5.7.

5.2 Simulation II

To validate GIRAFFE’s performance on datasets not explicitly designed to
satisfy our modeling assumptions, we create a second synthetic dataset.
Keeping the same dimensionality as in Section 5.1, we generate the matrices
R 2 RG⇥TF, P 2 RTF⇥TF, R0 2 RG⇥TF, and Y 2 RG⇥n for n = 50, G = 500,
and TF = 100. As shown in Figure 5.11, we first generate the regulatory
matrix R, from which we derive R0, P, and Y.
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5.2. Simulation II

Figure 5.11: Generation pipeline for ground-truth and GIRAFFE’s inputs.

Assuming that regulation is a noisy projection of the PPI and the gene ex-
pression matrix, we model R0, P and Y from the randomly generated R. We
do not model the TFA matrix. The ground-truth R is a sparse matrix, where
we draw the non-zero entries i.i.d from U (�1, 1). From R, the starting block
of our pipeline, we generate P as a binary matrix, where the entry between
a pair of TFs is set to one if and only if the cosine similarity between their
regulation vectors is among the top 30% across the dataset (therewith main-
taining a similar structure to a biological PPI); R0 as a corrupted version of
R, where we added zero-centered gaussian noise; and we sample Y from
a multivariate normal distribution with mean zero and covariance matrix
RRT.

5.2.1 Results

Now that we introduced the data generating process, we present our exper-
iments and results.

Quality of the inferred regulatory matrix In Table 5.3 we show AUROC
scores as a mean to evaluate GIRAFFE’s ability to recover R for different
noise levels, and we compare it to PANDA, OTTER, and the prior R0. All
results are averaged over B = 50 runs, and we report mean and standard
deviation of the results.
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Method
AUC GIRAFFE OTTER PANDA Prior

s = 0.05 0.929±0.002 0.956±0.001 0.690±0.002 0.956±0.001
s = 0.15 0.876±0.002 0.870±0.003 0.648±0.003 0.869±0.003
s = 0.25 0.813±0.002 0.788±0.003 0.611±0.003 0.788±0.003
s = 0.35 0.749±0.003 0.713±0.003 0.579±0.004 0.712±0.003
s = 0.45 0.696±0.002 0.658±0.003 0.557±0.004 0.658±0.003
s = 0.55 0.655±0.003 0.618±0.004 0.543±0.005 0.618±0.004
s = 0.65 0.622±0.005 0.591±0.005 0.532±0.004 0.590±0.005
s = 0.75 0.599±0.004 0.571±0.004 0.525±0.004 0.570±0.004
s = 0.85 0.581±0.005 0.559±0.004 0.521±0.005 0.558±0.004

s = 1 0.569±0.006 0.547±0.004 0.516±0.004 0.547±0.004

Table 5.3: Comparison of AUC-ROC score of the GRNs inferred by GIRAFFE, OTTER, PANDA,
and the prior. The score are averaged over B = 50 runs, and we report the standard deviation.

Similarly as in Section 5.1, the AUROC decreases when the prior becomes
less reliable. Apart from the scenario with almost perfect prior knowledge,
GIRAFFE outperforms the other methods.

Distinguishing enhancing from inhibitory interactions To estimate the abil-
ity to distinguish between enhancing and inhibitory interactions, we rely on
the sign accuracy

1
G · TF Â

i,j
I
⇥
(R̂i,j · Ri,j) = 1

⇤
,

where R̂ is the GRN inferred by GIRAFFE. Similarly as before, we repeat the
experiment B = 50 times.

Figure 5.12: Sign accuracy of R̂. The black line shows the mean over B = 50 runs, and the
gray area is within one standard deviation from the mean.
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5.2. Simulation II

Figure 5.12 shows sign accuracy of our GRNs as a proxy to evaluate GI-
RAFFE’s ability to distinguish enhancing from inhibitory regulation. It de-
creases proportionally to the reliability of the prior, and it is lower bounded
by an accuracy of 0.72 with our noise settings.

Sparsity Similarly as in Section 5.1, Figure 5.13 shows the ROC curves for
the accuracy of the estimated active set of R, obtained by comparing the
edge relevance computed by bootstrapping with the ground-truth value of
R, where non-zero edges are mapped to one. The results are much more
robust than in Figure 5.4, indicating that shuffling the prior network affects
the AUROC scores much more than corrupting it with additive noise.

Figure 5.13: AUROC between the edge relevance and an indicator variable for the corresponding
entry in the ground-truth being zero. Edge relevance is computed by averaging how many times
it was selected over B = 1000 runs with di↵erent values of l1 in Equation 4.3.

Individual ROC curves for the performance estimation and additional re-
sults to assess the robustness of our results can be found in Appendix B.3.
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5.3. Validation of regulatory effects and TFA on yeast

5.3 Validation of regulatory e↵ects and TFA on yeast

As a first validation on biological data, we use an experimental dataset for
cell-cycle synchronized Baker’s yeast cells (Saccharomyces cerevisiae). The
gene expression values consist of two replicates of measurements for 3551
genes across 24 time points in the yeast cell-cycle time course [Pramila et al.,
2006]. These data are combined with the presence of the motif in the pro-
moter region of the genes for 105 transcription factors [Harbison et al., 2004],
and we extract the interactions between those transcription factors from the
String Database [Szklarczyk et al., 2016]. To assess GIRAFFE’s ability to
recover the regulation matrix R, we compute the AUROC between the es-
timated GRN R̂ and a gold standard identified from ChIP-seq experiments
[Harbison et al., 2004]. ChIP-seq exploits chromatin immunoprecipitation to
determine in vitro which DNA fragments are enriched for a given protein.
After applying a thresholding (p < 0.001), the procedure yields genomic
fragments that are physically bound by a transcription factor [Park, 2009].
In Figure 5.14, we compare GIRAFFE’s performance against three baselines,
were the AUC considers only the subset of edges contained in our gold
standard.

Figure 5.14: AUROC between estimated regulations and ChIP-seq data as a ”gold standard”.
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5.4. ChIP-seq validation on human data

We observe that all three methods improve over the prior motif (AUROC=0.692).
OTTER (AUROC=0.701) and PANDA (AUROC=0.703) perform similarly,
while GIRAFFE has a higher score (AUROC=0.715) and is the only method
that consistently outperforms the motif’s ROC curve.

To validate the inferred transcription factor activities, we consider a second
dataset, where each sample collects the gene expression after a transcrip-
tion factor has been knocked-out. GIRAFFE correctly identifies 31 out of 50
transcription factors as having the lowest transcription factor activity in the
corresponding knock-out sample. The mean rank over all 50 interventions -
where the lowest transcription factor activity is assigned rank 0 - is 8.17.

5.4 ChIP-seq validation on human data

In this section we validate GIRAFFE’s performance on human data, using
PANDA [Glass et al., 2013], OTTER [Weighill et al., 2021], GENIE3 [Huynh-
Thu et al., 2010], TIGRESS [Haury et al., 2012], BITFAM [Gao et al., 2021],
and a motif-based binary prior for TF-gene binding from CIS-BP [Weirauch
et al., 2014] as benchmark. For all tissues, we download gene expression data
from GRAND [Ben Guebila et al., 2022], and we integrate PPI downloaded
from the STRING database [Szklarczyk et al., 2016]. As a gold standard,
we use experimentally-defined TF-genes interactions using ChIP-seq data
from hTFtarget [Zhang et al., 2020] and, in the case of kidney, from ReMap
[Chèneby et al., 2018].

Due to computational requirements, we omit other algorithms from our
benchmarks, such as ARACNE [Margolin et al., 2006], GLasso [Friedman
et al., 2008], and TIGER [Chen and Padi, 2022]. Furthermore, in all our ex-
periments, we have to reduce the default number of trees fitted by GENIE3
from 100 to 5, and run BITFAM on batches of genes to make them scale up
to the human genome on a CPU machine with 16GB RAM . Table 5.4 re-
ports the AUROC between the estimated regulation and the gold standard
for five different tissues, and we observe that GIRAFFE has better scores
in all of them. The corresponding plots are available in Figure B.9 in the
appendix.

GRAND does not only collect gene expression data, but also metadata for
each patient. We investigate the impact of ischemic time 1 on regulation
in lung. Figure 5.15 shows that the two-dimensional embedding of gene
expression is correlated with ischemic time, indicating that this is possibly a
confounding or biasing variable in our regression model. Hence, we adjust
for it. As a comparison, we preprocess the gene expression matrix using

1Sample-specific ischemic time is defined as the time from death or withdrawal of life-
support until the time the sample is placed in a fixative solution or frozen [Consortium et al.,
2015].
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5.4. ChIP-seq validation on human data

Tissue
Method Breast Colon Kidney Liver Lung Prostate

GIRAFFE 0.697 0.651 0.565 0.715 0.730 0.780

OTTER 0.668 0.562 0.547 0.673 0.474 0.511
PANDA 0.506 0.508 0.535 0.506 0.535 0.545
GENIE3 0.503 0.500 0.507 0.499 0.501 0.500
TIGRESS 0.512 0.505 0.502 0.502 0.501 503
BITFAM 0.521 0.524 0.521 0.517 0.519 0.517

Prior 0.513 0.515 0.533 0.529 0.505 0.562

Table 5.4: Comparison of AUC-ROC score with ChIP-seq gold standard for the GRNs inferred by
GIRAFFE, OTTER, PANDA, prior, GENIE3, TIGRESS and BITFAM across five di↵erent tissues.

the removeBatchEffect function 2 from the limma package [Ritchie et al.,
2015], a routine commonly used in bioinformatics to adjust for variables
of interest. The AUROC using GIRAFFE’s vanilla version is 0.730, which
improves to 0.758 when adjusting for ischemic time, and to 0.744 when using
the preprocessed gene expression.

Figure 5.15: Two-dimensional projection of the gene expression dataset obtained via PCA. The
colors show the ischemic time for each sample.

2To adjust for the effect of a variable h in a matrix X, removeBatchEffect first fits a linear
regression on every column of X, using h and the other columns as predictors. The value
of h multiplied by its corresponding estimated regression coefficient is then subtracted from
the original value of the column, yielding the adjusted result.
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5.5. Oncogenes and tumor suppressor genes4

5.5 Oncogenes and tumor suppressor genes
3

Cancer driver genes, those that drive the transformation of malignant cells,
can be also classified into oncogenes (OGs) or tumor suppressor genes (TSGs).
Oncogenes, when their normal behavior is disrupted, drive changes in cells’
behavior such that they start growing out of control, causing cells to be-
come cancerous [Kontomanolis et al., 2020]. Tumor suppressor genes, on the
other hand, are normally protecting the cell from damages and uncontrolled
growth, and a loss of their function may lead to malignant transformation
[Grandér, 1998]. In this section, we investigate whether GIRAFFE is able to
correctly discriminate the role of OGs and TSGs in different human tissues.
We expect TSGs to be more tightly regulated in healthy patients, and OGs
being more tightly regulated in cancer patients [Lopes-Ramos et al., 2017].

First, we recover GRNs using GIRAFFE for the cancer population, using
expression data provided in TCGA [Gao et al., 2019], and for the healthy
population, using data provided in GTEx [Consortium et al., 2015]. In both
cases, we employ a motif-based prior downloaded from CIS-BP [Weirauch
et al., 2014] and PPI from the STRING database [Szklarczyk et al., 2016].
Then, we compute a regulation score for each gene, defined as the sum of its
in-degree in the inferred GRN, and we compare the score difference between
the healthy and cancer populations. More precisely, let bH

i,k be the GIRAFFE
coefficient describing the relationship between TF k and gene i in the healthy
network, and bC

i,k be the analogous quantity for a specific cancer population.
We define the regulation score RP

i for gene i in population P 2 {H, C} as

RP
i :=

|TF|

Â
k=1

bP
i,k,

and we are interested in the difference Di := RH
i � RC

i . Following our as-
sumption, we expect a TSG gene i to have Di > 0, and an OG Di < 0. Impor-
tantly, this definition of the regulation score takes the activating or inhibitory
nature of the predicted interactions into account. For instance, if a gene has
mostly inhibitory interactions in the healthy network, Di decreases, provid-
ing less evidence that gene i could be a TSG, and more that it could be a OG.
We then compare our predictions with a curated list of tissue-specific onco-
genes and tumor suppressor genes provided by COSMIC [Bamford et al.,
2004]. First, we restrict our analysis to the drivers whose |Di| are in the
top 10% of the regulation score distribution; we do not expect to detect dif-
ferent regulation for all drivers, but when the difference is relatively large,

3The authors thank Viola Fanfani for the thoughtful critiques and helpful review of this
section.
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5.6. Sex differences in lung adenocarcinoma

we would like to get the correct sign (D > 0 for OG and D < 0 for tsg).
GIRAFFE is able to correctly discriminate the difference in regulation for 6
TSGs in breast (86% accuracy), one OG in colon, 2 TSGs in skin, one OG in
lung, one OG and one TSG in thyroid (all with 100% accuracy).

5.6 Sex di↵erences in lung adenocarcinoma

In this section we apply GIRAFFE to graph differential analysis, an established
downstream application to compare biological networks derived from dif-
ferent phenotypes. Examples of differences studied in the literature include
healthy and cancer populations [Grechkin et al., 2016], different disease
stages [Cuomo-Haymour et al., 2022, Lafaurie et al., 2023], epigenetic states
[Del Real et al., 2017, Natanzon et al., 2018], and sex [Lopes-Ramos et al.,
2020]. Figure 5.16 shows a typical graph differential analysis pipeline on
two toy-size GRNs.

Figure 5.16: Visualization of a typical graph di↵erential analysis pipeline. First, two networks
are computed for the variables that we would like to analyze, e.g. disease states. Then, for each
gene in a given network, a score is computed, for instance the sum of the incoming edges. The
di↵erential score for a given gene is then the di↵erence between its corresponding score in both
networks. The dark gray boxes in the di↵erential score vectors represent three genes in a the
same pathway.

First, the GRNs are computed using specific data for the conditions under
study. In the case of GIRAFFE, each GRN has to be computed using expres-
sion data of individuals belonging to the corresponding population, and
condition-specific prior knowledge should be used if available. Then, for
each gene in each network, an aggregate score is computed. Options range
from heuristics such as the sum of the incoming edges to more involved
embeddings obtained via representation learning techniques [Grover and
Leskovec, 2016, Perozzi et al., 2014]. These scores are then used to compute
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5.6. Sex differences in lung adenocarcinoma

a differential score for each gene, quantifying the similarity in the regulation
mechanism with respect to the chosen aggregate score. Finally, statistical
tests are performed to determine whether groups of genes belonging to a
certain biological pathway 5 have large differential scores. Since the regula-
tion of most genes is expected to be stable across different conditions [Singh
et al., 2018], pathways exhibiting different regulatory mechanisms are likely
to be responsible for phenotype-specific behaviours, and their identification
can improve our understanding of the underlying biology, as well as our
ability to treat, cure, and prevent diseases.

Previous research shows that multiple types of cancers are exhibited differ-
ently in males and females [Clocchiatti et al., 2016], and these differences
are reflected in the gene regulatory networks for each sex [Kukurba et al.,
2016, Sugathan and Waxman, 2013]. Inspired by Lopes-Ramos et al. [2020],
we study sex differences in regulation for both healthy and lung adenocar-
cinoma (LUAD) cells. Our experimental setting is summarized in Figure
5.17.

Figure 5.17: Visualization of our graph di↵erential analysis pipeline. After recovering the GI-
RAFFE’s networks using sex-specific prior knowledge (when possible), we computed the di↵er-
ential score for each gene as the di↵erence between the sum of its in-degrees in both networks.
Finally, we applied pathways enrichment analysis on the di↵erential scores.

First we recover GIRAFFE networks for four different populations: healthy
men (238 donors), healthy women (122 donors), men affected by LUAD (242
donors), and women affected by LUAD (280 donors). The LUAD data is
provided in TCGA [Gao et al., 2019], and the normal lung data is provided

5The term biological pathway refers to a set of genes known to affect the organism’s
behaviour in a certain context. Examples include metabolic pathways, signaling pathways,
and pathways determining the response to drugs.
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5.6. Sex differences in lung adenocarcinoma

in GTEx [Consortium et al., 2015]. We integrate a sex-specific binary prior for
TF-gene binding from CIS-BP [Weirauch et al., 2014], and sex independent
PPI data for 640 transcription from the STRING database [Szklarczyk et al.,
2016]. We then run two separate differential analyses: the first one to study
sex biases in healthy populations, and the second one to study sex biases in
LUAD populations. In both cases, the pipeline to determine the enriched
pathways is identical. Let bF

i,k be the GIRAFFE coefficient describing the
relationship between TF k and gene i in the female network, and bM

i,k the
analogous quantity for the male population. The differential scores for each
gene i, defined as

Di :=
|TF|

Â
k=1

bM
i,k � bF

i,k,

are collected in a single vector that we use for gene enrichment analysis.
In particular, we run the ranking tests implemented in FGSEA [Korotkevich
et al., 2016] against KEGG’s curated pathways [Kanehisa et al., 2017]. We use
p-values corrected with FDR 0.05 using the Benjamini-Hochberg procedure
[Benjamini and Hochberg, 1995].

Figure 5.18 shows the pathways enriched for healthy patients, and Figure
5.19 for LUAD patients. In both figures, a negative normalized enrichment
score (NES) indicates higher regulation in males, while a positive NES indi-
cates stronger regulation in females. We observe that in normal lung, most
enriched pathways have a higher score in men, indicating that their regula-
tory interactions tend to be stronger. This could be linked to the fact that
women are more likely to get lung cancer than males [Patel, 2005]. Con-
versely, in LUAD, most enriched pathways have higher scores in women.
This backs up the fact that women have greater survival rates regardless of
stage, histology, or smoking status, even after adjusting for gender-specific
life expectancy [North and Christiani, 2013]. Moreover, differentially tar-
geted pathways include immune processes and drug metabolism-related
pathways, potentially supporting previous work showing that men and
women respond differently to drugs [Lopes-Ramos et al., 2018]. Finally, the
most differentially expressed pathways in LUAD is MAPK signaling, a well
known cancer pathway and a main target of therapies for lung cancer [Lu
et al., 2011, Liang et al., 2012, Jain et al., 2021] that has recently been shown to
participate in genetic differences between male and female in non-smoking
lung adenocarcinoma patients [Xu et al., 2022].
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5.6. Sex differences in lung adenocarcinoma

Figure 5.18: Pathways enriched for healthy lung using GIRAFFE.

Figure 5.19: Pathways enriched for LUAD using GIRAFFE.
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5.6. Sex differences in lung adenocarcinoma

To further investigate the plausibility of our findings, we compare them with
Lopes-Ramos et al. [2020], who conducted the same analysis using PANDA.
Their results are reported in Figures B.10-B.11. In the healthy population,
out of the 31 pathways enriched in GIRAFFFE and 27 pathways enriched
in PANDA, 15 are shared: cell adhesion molecule cams, asthma, autoim-
mune tyroid disease, and allograft rejection with NES > 0; spliceosome,
proteasome, DNA replication, pyrimidine metabolism, oxidative phospho-
rylation, metabolism of xenobiotics by cytochrome p450, RNA polymerase,
fructose and mannose metabolism, base excision repair, mismatch repair,
amino sugar, and nucleotide sugar metabolism with NES < 0. There are no
enriched pathways with discordant NES sign. In the LUAD population, out
of the 60 pathways are enriched in GIRAFFFE and 16 pathways enriched
in PANDA, 10 are shared: intestinal immune network for iga production,
asthmam, autoimmune tyroid disease, systemic lupus erythematosus, graft
versus host disease, type I diabetes mellitus, leishmania infection, cytokine
cytokine receptor interaction, antigen processing and presentation, all with
NES > 0. Endocytosis and pathways in cancer are enriched with positive
NES by GIRAFFE and negative NES by PANDA.
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Chapter 6

Discussion

In this thesis we have developed GIRAFFE, a new algorithm for the joint in-
ference of gene regulatory networks and transcription factor activities. Our
approach is based on a factorization of the gene expression matrix, where
we integrate biological knowledge, i.e. protein-protein interaction and a
prior for the TF-gene binding, to guide the optimization. As backed-up
by theoretical considerations [Wolpert and Macready, 1997], incorporating
prior knowledge into the algorithm’s behaviour is a good practice in many
problems, and here it helps learning regulatory interactions that would be
difficult to infer using any data type in isolation.

We modeled the problem as a graph whose node set is partitioned into genes
and transcription factors. Undirected edges between pairs of transcription
factors are extracted from the prior protein-protein interaction, while the
directed edges from transcription factors (sources) to genes (targets) are in-
ferred. In contrast to many other methods, that aim to understand regula-
tion through gene co-expression networks, our structure better represents
the underlying biology: an edge between TF i and gene j indicates that the
former is, possibly by forming a higher-order protein complex, a regulator
of the latter, and the edge weight quantifies the strength of the relationship.

GIRAFFE’s model and loss function are inspired by OTTER and PANDA,
which incorporate the same types of prior knowledge to infer edges from
transcription factors to genes. In particular, the regularizers of our loss func-
tion - which encourage interacting proteins to target the same genes, and cor-
related genes to have similar interactions with TFs - resemble the message
passing equations from PANDA and OTTER’s objective. The advantage of
GIRAFFE is framing the problem as a matrix factorization, yielding a model
with a different interpretation. Instead of having larger weights indicating
higher probability of regulation, GIRAFFE uses the inferred transcription
factor activities to estimate partial effects, which allow to distinguish activat-
ing from inhibitory interactions.
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In Chapter 5, we evaluated GIRAFFE in relation to the objectives outlined
in Section 1.1. In particular, we investigated its ability to scale up to the
size of the human genome, its accuracy, interpretability, flexibility, and the
plausibility of the inferred networks in biological applications.

In terms of scalability, GIRAFFE is able to efficiently infer GRNs and tran-
scription factor activities on human datasets, which are typically composed
by 20 to 30 thousand genes. Using a single CPU machine with 16GB RAM,
our algorithm took 150 seconds on average for the tissues in Table 5.4. Ex-
ploiting Pytorch’s gradient-based methods comes with a significant compu-
tational advantage, and if necessary GIRAFFE can be further sped up with
modern hardware such as GPUs.

We demonstrated the accuracy of the inferred regulatory interactions and
transcription factor activities through extensive experiments in both syn-
thetic and real world data. Considering the AUROC between the ground-
truth and inferred regulatory network, GIRAFFE outperforms OTTER and
PANDA in both our simulations, being the most robust method with respect
to corruptions in the prior network. When we evaluated the AUROC using
Ch-IP seq data as ground-truth for breast, colon, liver, lung, and prostate,
GIRAFFE had the largest margin over the competing algorithms, which in
some cases performed only slightly better than random. Since these tissues
used the same database as a source for the ground-truth, to ensure indepen-
dence, we performed additional experiments unsing different sources for
ChIP-seq data on kidney and yeast. Even if with lower margin, GIRAFFE
was still the best performing algorithm.

Note that, similarly as GIRAFFE, aso TIGRESS considers a regularized linear
regression between TFs and genes. GENIE3 takes this a step further by ac-
counting for non-linear interactions, which are known to increase the predic-
tive power of the model. A reason why they perform worse than GIRAFFE
could be that both of them consider gene expression as a proxy for TF activ-
ity, suggesting that incorporating TFA as a latent factor might better model
the underlying mechanisms. Moreover, they do not incorporate prior knowl-
edge, reinforcing the importance of integrating multiple data types to learn
meaningful gene regulatory networks. Finally, we also studied the quality
of the inferred TFA matrix: in the simulations in Section 5.1, we showed
that GIRAFFE recovers transcription factor activities yielding a small recon-
struction error, but without necessarily guaranteeing identifiability. Section
5.3 studied the inferred TFA from a more biological perspective, showing
that it was able to correctly assign the lowest activity to the knocked-out
transcription factor in 31 out of 50 cases, maintaining an average rank of
8.17.

The flexibility of GIRAFFE is reflected by the possibility to customize the
model to the requirements of a downstream application. First, the linear re-
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gression can be extended to incorporate further variables of interest. In Sec-
tion 5.1, we showed that adjusting for confounders, i.e. variables affecting
both the TF activity and gene expression in the data generating mechanism,
and biasing variables, i.e. variables affecting gene expression only, is benefi-
cial. As a proof-of-concept, in Section 5.4, we identified ischemic time as a
potential batch effect in lung, and we showed that adjusting for it increases
the AUROC from 0.730 to 0.758. This improvement is similar to the one we
get when applying GIRAFFE with a gene expression matrix preprocessed
with limma, an established package to correct for batch effects. The second
option to customize GIRAFFE is promoting sparsity in the inferred regu-
latory matrix by exploiting the geometry of the `1-norm and the proximal
operator. This can be useful for applications where a correct identification
of the regulator is essential, e.g. to exploit genetic perturbations [Cai et al.,
2013], and can be combined with the stability selection framework to control
for the expected number of false positives.

To investigate GIRAFFE’s behaviour in downstream applications, we com-
bined it with gene set enrichment analysis to study sex differences in lung.
We observed that GIRAFFE finds a greater number of enriched pathways.
A reason for this could be related to the interpretation of the weights as
partial effects, that assign a positive/negative sign to activating/inhibitory
regulatory interactions. Let’s consider, for instance, a pair of transcription
factor-gene that is enhancing in men and inhibitory in women. PANDA and
OTTER, if they are correctly confident that a regulatory relationship exists,
would predict a large edge weight in both cases. In this way, however, the
edge difference between the sexes could cancel out, therewith contributing
to a pathway not being enriched. This suggests that integrating GIRAFFE
in graph differential analysis pipelines could be beneficial to shed light on
unknown cancer mechanisms, as well as sex biases in diseases.

There is still a number of limitations in GIRAFFE. First, our model does not
take saturation effects into account. While it remains true that the proba-
bility of binding often depends linearly on the transcription factor activity
[Halford and Marko, 2004], recent research suggests that increasing the ac-
tivities beyond a certain threshold does not affect the expression of target
genes [Koşar and Erbaş, 2022]. To address this issue one could explore the
effect of incorporating (smooth) thresholding functions into GIRAFFE’s ob-
jective function. Second, our model requires the introduction of a parameter
for the number of iterations, whose value affects the configuration of the
inferred regulatory network. For instance, when using a motif-based binary
prior, the weights distribution can shift from a bimodal distribution with
various peaks’ distances to a unimodal distribution. Even if using a contin-
uous motif, such as the Garcia-Alonso model [Garcia-Alonso et al., 2019],
can mitigate the phenomenon, we aim to further investigate the role of early
stopping in GIRAFFE and provide a more principled convergence criterion.
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Our future work aims to expand the capabilities of GIRAFFE by integrat-
ing additional data types, such as genetic variants, mutations, chromatin
accessibility, and SNPs, all of which can have an impact on regulatory inter-
actions [Martin et al., 2019]. We believe that incorporating these data types
has the potential to enhance our inference method. We could achieve this by
integrating the epigenomic profile into the prior network in a preprocessing
step, similarly as proposed for EGRET [Weighill et al., 2022], or by adapting
GIRAFFE’s optimization procedure. We are also excited to apply GIRAFFE
to single-cell datasets and disease contexts, with the goal of generating novel
testable hypotheses regarding the role of gene regulation in cancer.

44



Chapter 7

Concluding thoughts

In this thesis, we studied the problem of inferring gene regulatory mecha-
nisms from data, in particular the role of transcription factor binding. As a
crucial component to understand cancer, this has applications in drug dis-
covery, early detection, and personalized treatment.

To tackle the challenge of combining accuracy, interpretability, scalability,
and flexibility in a single model, we introduced GIRAFFE, a new algorithm
to jointly infer regulatory effects and transcription factor activities. Assum-
ing linear relationships, our model estimates partial effects considering tran-
scription factor activities as covariates and gene expression as target variable.
Hence, it is able to distinguish activating from inhibitory regulation based
on the weight’s sign. Framed as a biologically informed matrix factorization,
our loss function is minimized with gradient-based methods, yielding an ef-
ficient algorithm that scales up to the size of the human genome. To further
customize the model, we included the possibilities to adjust for variables of
interest and promoting sparsity in the inferred regulatory network.

Our analysis demonstrated that GIRAFFE is able to accurately reverse engi-
neer gene regulatory networks by outperforming state-of-the-art gene regu-
latory inference methods on both synthetic and real world datasets. By using
in silico data and a yeast interventional dataset as proof-of-concepts, we also
showed that it can infer reasonably meaningful transcription factor activities.
Moreover, when applied to study sex differences in lung, GIRAFFE recovers
knowledge that is consistent to both the literature and established methods,
reinforcing its potential of leading to valuable insights in biological contexts.

A key advantage of GIRAFFE is that its regularized linear regression ap-
proach can be further generalized to integrate additional data types such as
epigenomic profiling data, opening avenues for future research. We believe
that this approach has tremendous potential to inform our understanding
of cancer, contributing towards more effective and personalized healthcare.
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Appendix A

Sparse optimization

In this appendix we show our approach to solve

arg min
x2Rp

f (x) + l||x||1, (A.1)

where f is a non-convex and differentiable objective function. Note that
Problem 4.3 is an instance of Equation A.1. The goal is applying `1 regu-
larization to the optimization process of f (x) in order to obtain a sparse
solution.

A.1 Proximal Adam

Adam [Kingma and Ba, 2014] is an adaptive gradient method to minimize
a differentiable function f (x). It iteratively adapts an initial guess x0 until
convergence using the rule

xt+1 = xt � a
j(mt)
y(xt)

,

where a > 0 is the learning rate, and mt and vt are estimates for the first
and second order of r f (x). For our purposes, we can conveniently abstract
from the exact formulation of the exponential decay functions j and y. Note
that we keep a constant to simplify the notation, but our conclusions can be
naturally extended to incorporate an iteration-dependent learning rate at.

Similarly as in the proximal gradient method [Rockafellar, 1997], the vanilla
version of Adam can be adapted to solve the composite optimization prob-
lem A.1 and get sparse solutions [Melchior et al., 2019].
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A.1. Proximal Adam

Definition A.1 The proximal operator of a convex function g at x is defined as

proxg(x) := arg min
y

{g(y) +
1
2
||x � y||

2
2}

Conveniently, the proximal operator for the `1�norm can be computed in
closed form.

Lemma A.2 If g(x) = l||x||1 for l 2 R+, then proxg(x) is given by

proxl||·||1(xi) =

8
><

>:

xi � l if xi > l

0 if |xi|  l

xi + l if xi < �l

which is often referred to as soft-thresholding operator. In particular, the proxi-
mal operator for the `1�norm can be efficiently computed in O(p).

Proof The `1�norm is separable, and thus we can consider each of its com-
ponents separately. Since g(xi) is convex, it is sufficient to find yi such that
the optimality condition

0 2 r(l|yi|+
1
2
(xi � yi)

2)

is satisfied. We apply a case distinction to the optimal solution y⇤i .

For y⇤i > 0, the optimality condition yields

l + y⇤i � xi = 0 =) y⇤i = xi � l.

and holds iff xi > l.

For y⇤i < 0, the optimality condition yields

�l + y⇤i � xi = 0 =) y⇤i = xi + l.

and holds iff xi < �l.

For y⇤i = 0 we rely on subdifferential theory. Since ∂l|xi| 2 [�l, l],
we get

0 2 [�l, l] + y⇤i � xi =) xi 2 [�l, l] =) |xi|  l,

which concludes the proof. ⇤

47



A.2. Tuning of the regularization parameter

After picking an initial guess x0 2 Rp, proximal Adam alternates between
gradient update and proximal operator using

xt+1 = proxl||·||1

✓
xt � a

j(mt)
y(xt)

◆

In other words, after computing the gradient step, proximal Adam shrinks to
zero all entries of xt that are less than l in absolute value. While we couldn’t
formally derive optimality conditions for proximal Adam, we provide an
intuition on why it has been shown to provide good performance in multiple
applications including matrix factorization [Melchior et al., 2019]. The step
direction of Adam can be interpreted as a bounded gradient [Kingma and
Ba, 2014], and by introducing the approximation j(mt)

y(xt)
⇡ r f (xt), we get:

x
⇤ = proxal||·||1(x

⇤
� ar f (x⇤))

() 0 2 a∂(l||x⇤||1) + (x⇤ � (x⇤ � ar f (x⇤)))
() 0 2 ∂(l||x⇤||1) +r f (x⇤)
() x

⇤ is a local optimum

In other words, in case of convergence, proximal methods approach a sta-
tionary point. Moreover, under a specific tuning of the learning rate a, con-
vergence can be guaranteed [Défossez et al., 2020]. However, despite of
the lack of a proof for convergence, constant learning rates are common
[Kingma and Ba, 2014].

A.2 Tuning of the regularization parameter

The main reason why we introduced `1 regularization in Equation A.1 is
to obtain sparse solutions. The underlying assumption is that only some
entries of R are are non-zero. We call this the active set

R0 := {(i, j) : Ri,j 6= 0},

and our goal is estimating a gene regulatory networks R̂ s.t. R̂0 := {(i, j) :
R̂i,j 6= 0} ⇡ R0. To achieve this result, the choice of the regularization
hyperparameter l is crucial: small values of l lead to an R̂0 with larger size
and potentially many false positives; on the other side of the spectrum large
values of l yield a very sparse estimate, with the risk of missing true edges.
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A.2. Tuning of the regularization parameter

In this Section we summarize stability selection, a framework proposed by
Meinshausen and Bühlmann [2010] to estimate the active set. It allows to
determine how ”stable” the selection of a certain edge is, and how to achieve
some type-I error control for the number of false positive edges.

The main idea is to assign a relevance score to each edge relying on a sub-
sampling approach. Let I⇤ be a random subsample of {1, . . . , n} of size
b

n
2 c. After selecting the corresponding samples in the gene expression, we

run GIRAFFE with a given l to get an estimated active set R̂0
l(I⇤). This

procedure can be repeated B times to obtain different estimated active sets
R̂0

l(I⇤1), . . . , R̂0
l(I⇤B). The relevance score for each edge is then computed as

the overlap among the estimated active sets. More concretely, we define the
relevance score for an edge (i, j) as

P̂(i,j)(l) :=
1
B

B

Â
b=1

I
h
(i, j) 2 R̂0

l(I⇤b)
i

.

Instead of computing the relevance score for a single value of l, the stability
framework suggest to consider a set of candidate values L, and then picking
the stable active set R̂stable via a cutoff pthr as follows

R̂stable := {(i, j) : max
l2L

P̂(i,j)(l) � pthr}.

In this way, the choice of the hyperparameter l is relaxed (one can pick
multiple candidate values, similarly as in CV) and the choice of the active
set depends on the value of pthr only. Note that a large value of pthr is very
conservative and potentially misses true edges, while a small value of pthr
can be too loose and incorporating many false positives. In other words,
we pushed the burden from picking a suitable value for the regularization
parameter l to picking a suitable value of pthr. Stability addresses this issue
by providing a choice guaranteed to control for the expected number of false
positives, i.e. type-I error control. Before we report their main theorem and
how it can be used, we introduce some notation. Let R̂L := [l2LR̂0

l be the
set of selected variables for all variables of l 2 L, and let qL := E

⇥
|R̂0

l|
⇤

be the expected number of selected edges. Then the following theorem
provides a principled way to select pthr.

Theorem A.3 Assuming both that the distribution of I
⇥
(i, j) 2 R̂0(l)

⇤
is exchange-

able for all (i, j) /2 R0, and that R̂ is not worse than random guessing, then for
pthr 2 ( 1

2 , 1) the expected number of false positives V is bounded by

E [V] 
1

2pthr � 1
q2

L
p

,
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A.2. Tuning of the regularization parameter

where p is the size of our GRN.

In practice, we could run GIRAFFE for a set of regularization parameters
and at keep only the top K edges at each iteration. This would ensure that
qL  K. Then, by picking

pthr =
1
2
+

K2

2pv0
,

we would know that the number of false positives is bounded by v0. For
instance, when inferring a GRN of size p = 200 · 103, we could pick the top
K = 103 edges and, for a guarantee of having at most 100 false positives we
would have to pick pthr = 0.525. In the original paper, the recommendation
is picking a large value of K and letting the stability framework reduce the
size of the estimated active set.

50



Appendix B

Supplementary materials

B.1 Transcription factor expression is not a reliable sur-

rogate for its activity

In Chapter 4 we presented our model, where the relationship between each
gene and the transcription factors is expressed as a linear regression (Equa-
tion 4.1). GIRAFFE does not only infer the coefficients of the linear regres-
sion (i.e. the GRN), but also its predictors (i.e. the transcription factor ac-
tivities). The reason for this choice is that transcription factor activity is
difficult to measure directly with current technologies and, due to the com-
plex protein synthesis mechanism, using transcription factor expression as
a surrogate is a poor idea. Here we present our experiments supporting this
claim.

We consider a real gene expression dataset, with almost 20 thousand re-
sponse variables Yi measuring the expression of gene i across n samples,
and p = 481 covariates Xj variables measuring the gene expression of tran-
scription factor j across the same n samples. First, we fit Lasso regressions
between the response variables Yi and the predictors Xj, where we pick the
regularization hyperparameters of the Lasso using 5-fold CV. To evaluate the
quality of the predictors selected by the Lasso, we compare it with the motif.
The underlying hypothesis is that transcription factors whose sequence mo-
tif is present in the promoter region of the target gene should have higher
chances of being selected by the Lasso. However, when we average over
all response variables, only 13.5% of the selected transcription factors have
their sequence motif in the promoter region of the target. To show the ro-
bustness of our conclusion on a single gene selected at random, we apply
a subsampling approach to assign a relevance score to each transcription
factor. Figure B.1 shows the scores for transcription factors in the motif
(black) and not in the motif (green). The motif transcription factors are not
clustered on the right side of the plot (corresponding to high relevance pre-
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B.1. Transcription factor expression is not a reliable surrogate for its
activity

dictors), supporting the claim that they are not more relevant than the other
predictors.

Figure B.1: Relevance scores for the transcription factors used as a predictor for the gene
expression of a randomly selected target gene. The transcription factors whose sequence motif
is present in the promoter region of the target gene are colored in black, while the other ones
are depicted in green.

Finally, we run Ridge regressions for 500 genes (selecting the regularization
hyperparameter with 5-fold CV) and we plot the weights for transcription
factors whose motif is (not) in the promoter region of the target gene. Figure
B.2 shows that both weights distributions have a similar shape, and that tran-
scription factors in the motif tend to have lower weights. This contrast the
biological intuition, as the motif is commonly used as a prior for regulation.

We conclude that we couldn’t find any evidence that transcription factor
mRNA expression can be reliably used as a proxy for its activity in a linear
model such as ours. This observation, together with the conclusions from
other studies [Ma and Brent, 2021, Latchman, 1993], is the main motivation
why we opted to jointly infer transcription factor activities with the GRN.
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B.2. Addendum to Section 5.1

Figure B.2: Transcription factor coe�cients distributions obtained with Ridge regression with
regularization parameter computed with 5-fold CV. In orange the weights for transcription factors
whose motif is not in the promoter region of the target, and in blue the weights for transcription
factors whose motif is in the promoter region of the target.

B.2 Addendum to Section 5.1

In this section we show the robustness of the results presented in Section 5.1.
In particular, we check the differences when we change the distribution of
the non-zero entries of R (we test U (�a, a) for different values of a), and the
value of the density parameter. Table B.2 shows the robustness of the results
presented in Table 5.2 when 30% of the binary prior network are flipped for
different combinations of sparsity/ width of the uniform distribution for R.
Similarly as in the main experiment, all results are averaged over B = 50
runs. Similarly as in Figure 5.2, Figure B.3 shows the sign accuracy for
different noise settings. We observe that the same trend holds for different
distributions of the true regulation matrix R. Figure B.4 shows the ROC
curves for the sparsity scores for different setting as in Figure 5.4. Finally,
we report the individual ROC curves for Table 5.3.
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Method
Setting GIRAFFE OTTER PANDA Prior

R density: 0.1 0.890 ±0.001 0.857±0.001 0.884±0.002 0.700±0.001
R density: 0.2 0.852 ±0.001 0.824±0.001 0.812±0.001 0.700±0.001
R density: 0.7 0.759 ±0.001 0.739±0.001 0.662±0.001 0.700±0.002
R density: 0.9 0.734 ±0.002 0.711±0.003 0.601±0.001 0.700±0.002

R i.i.d. from U (�1, 1) 0.860 ±0.001 0.839±0.004 0.844±0.001 0.700±0.001
R i.i.d. from U (�3, 6) 0.865 ±0.002 0.839±0.001 0.844±0.001 0.700±0.001
R i.i.d. from U (�5, 10) 0.868 ±0.001 0.840±0.001 0.844±0.001 0.700±0.001

R i.i.d. from U (�10, 20) 0.870 ±0.001 0.839±0.002 0.844±0.001 0.700±0.001

Table B.1: Comparison of AUC-ROC score of the GRNs inferred by GIRAFFE, OTTER, PANDA,
and the prior. We flip 30% of the entries in the prior motif and investigate the robustness with
respect to other parameters used in the simulation.

Figure B.3: Sign accuracy of R̂ estimated by R for di↵erent distributions of R. The black line
shows the mean over B = 50 runs, and the gray area is within one standard deviation from the
mean.
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Figure B.4: AUROC for the accuracy of the estimated active set of R. We show the results for
di↵erent densities of R and di↵erent width of the uniform distribution for non-zero entries.
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Figure B.5: ROC curves for the results in Table 5.2.
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B.3 Addendum to Section 5.2

In this section we show the robustness of the results presented in Section 5.2.
In particular, we check the differences when we change the distribution of
the non-zero entries of R (we test U (�a, a) for different values of a), and the
value of the density parameter. Table B.2 shows the robustness of the results
presented in Table 5.3 for s = 0.5 and different combinations of sparsity/
width of the uniform distribution for R. Similarly as in the main experiment,
all results are averaged over B = 50 runs. Similarly as in Figure 5.12, Figure
B.6 shows the sign accuracy for different noise settings. We observe that the
same trend holds for different distributions of the true regulation matrix R.
Figure B.7 shows the ROC curves for the sparsity scores for different setting
as in Figure 5.13. Finally, we report the individual ROC curves for Table 5.3.

Method
Setting GIRAFFE OTTER PANDA Prior

R density: 0.3 0.669 ±0.002 0.645±0.002 0.553±0.002 0.646±0.003
R density: 0.5 0.665 ±0.002 0.645±0.002 0.551±0.003 0.650±0.002
R density: 0.7 0.658 ±0.002 0.648±0.001 0.544±0.001 0.649±0.001
R density: 0.9 0.650 ±0.003 0.646±0.001 0.542±0.005 0.648±0.002

R i.i.d. from U (�1, 1) 0.687 ±0.001 0.647±0.004 0.552±0.004 0.647±0.004
R i.i.d. from U (�2, 4) 0.819 ±0.001 0.796±0.002 0.614±0.002 0.795±0.003
R i.i.d. from U (�3, 6) 0.869 ±0.002 0.862±0.001 0.646±0.001 0.861±0.001
R i.i.d. from U (�5, 10) 0.908 ±0.002 0.916±0.001 0.670±0.003 0.915±0.001

R i.i.d. from U (�10, 20) 0.928 ±0.002 0.954±0.002 0.691±0.003 0.955±0.002

Table B.2: Comparison of AUC-ROC score of the GRNs inferred by GIRAFFE, OTTER, PANDA,
and the prior. We set s = 0.5 and investigate the robustness with respect to other parameters
used in the simulation.
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Figure B.6: Sign accuracy of R̂ estimated by R for di↵erent distributions of R. The black line
shows the mean over B = 50 runs, and the gray area is within one standard deviation from the
mean.

Figure B.7: AUROC for the accuracy of the estimated active set of R. We show the results for
di↵erent densities of R and di↵erent width of the uniform distribution for non-zero entries.
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Figure B.8: ROC curves for the results in Table 5.3.
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B.4 Addendum to Section 5.4

Figure B.9: ROC curves for the results in Table 5.4.
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B.5 Addendum to Section 5.6

Figure B.10: Pathways enriched for healthy lung using PANDA.
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Figure B.11: Pathways enriched for LUAD using PANDA.

Figure B.12: Pathways enriched for healthy lung using OTTER.
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Figure B.13: Pathways enriched for LUAD using OTTER.
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